A - Investment
A - Investment
John never knew he had a grand-uncle, until he received the notary’s letter. He learned that his late grand-uncle had gathered a lot of money, somewhere in South-America, and that John was the only inheritor.
John did not need that much money for the moment. But he realized that it would be a good idea to store this capital in a safe place, and have it grow until he decided to retire. The bank convinced him that a certain kind of bond was interesting for him.
This kind of bond has a fixed value, and gives a fixed amount of yearly interest, payed to the owner at the end of each year. The bond has no fixed term. Bonds are available in different sizes. The larger ones usually give a better interest. Soon John realized that the optimal set of bonds to buy was not trivial to figure out. Moreover, after a few years his capital would have grown, and the schedule had to be re-evaluated.
Assume the following bonds are available:
With a capital of e10 000 one could buy two bonds of $4 000, giving a yearly interest of $800. Buying two bonds of $3 000, and one of $4 000 is a better idea, as it gives a yearly interest of $900. After two years the capital has grown to $11 800, and it makes sense to sell a $3 000 one and buy a $4 000 one, so the annual interest grows to $1 050. This is where this story grows unlikely: the bank does not charge for buying and selling bonds. Next year the total sum is $12 850, which allows for three times $4 000, giving a yearly interest of $1 200.
Here is your problem: given an amount to begin with, a number of years, and a set of bonds with their values and interests, find out how big the amount may grow in the given period, using the best schedule for buying and selling bonds.
Input
The first line contains a single positive integer N which is the number of test cases. The test cases follow.
The first line of a test case contains two positive integers: the amount to start with (at most $1 000 000), and the number of years the capital may grow (at most 40).
The following line contains a single number: the number d (1 <= d <= 10) of available bonds.
The next d lines each contain the description of a bond. The description of a bond consists of two positive integers: the value of the bond, and the yearly interest for that bond. The value of a bond is always a multiple of $1 000. The interest of a bond is never more than 10% of its value.
Output
For each test case, output – on a separate line – the capital at the end of the period, after an optimal schedule of buying and selling.
Sample Input
1
10000 4
2
4000 400
3000 250
Sample Output
14050
思路如下
这一题是一个完全背包的模型,在做题的时候我们需要注意一些地方,我 手中的总钱数money在每一过一年是会增加的(因为股票的利润),所以我们的 前变为:money += f[money/1000](该年的利润);其次这一个题的数据范围非常大,而数组是不可能开这么大的,但是这一题又说了 股票的价格是以1000的倍数,手中的钱money也是1000倍数 ,所以我们可以同时 讲 每支股票的价格 与手中的金钱 同除以1000,这样我们开的数组就足放的下所有数据了
题解如下
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
struct Node
{
int pri;
int val;
};
Node node[100];
int main()
{
int q;
//cin>>q;
scanf("%d",&q);
while(q--)
{
int money,year,spci; //spci 为股票的种类
//cin>>money>>year>>spci;
scanf("%d%d%d",&money,&year,&spci);
for(int i = 1;i <= spci;i ++)
{
int temp;
//cin>>temp>>node[i].val;
scanf("%d%d",&temp,&node[i].val);
node[i].pri = temp/1000; //除以1000缩小范围
}
while(year--)
{
int f[100005] = {0}; //状态转移方程
for(int i = 1;i <= spci;i ++)
for(int mon = node[i].pri;mon <= money/1000;mon ++)
f[mon] = max(f[mon],f[mon - node[i].pri ] + node[i].val);
money += f[money/1000];
}
cout<<money<<endl;
}
return 0;
}
A - Investment的更多相关文章
- Case Studies: Retail and Investment Banks Use of Social Media
The past couple of months have seen an increased acknowledgement of the role social media has to pla ...
- [HDU 1963] Investment
Investment Time Limit:10000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Descrip ...
- POJ2063 Investment 【全然背包】
Investment Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8019 Accepted: 2747 Descri ...
- POJ 2063 Investment (完全背包)
A - Investment Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u Subm ...
- POJ 2063 Investment 完全背包
题目链接:http://poj.org/problem?id=2063 今天果然是卡题的一天.白天被hdu那道01背包的变形卡到现在还没想通就不说了,然后晚上又被这道有个不大也不小的坑的完全背包卡了好 ...
- [POJ 2063] Investment (动态规划)
题目链接:http://poj.org/problem?id=2063 题意:银行每年提供d种债券,每种债券需要付出p[i]块钱,然后一年的收入是v[i],到期后我们把本金+收入取出来作为下一年度本金 ...
- hdu 1963 Investment 多重背包
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1963 //多重背包 #include <cstdio> #include <cstr ...
- poj 2063 Investment
题意:给定一个初始资金capital,然后给定d种投资方案,每种投资方案中有投资额value[i](是1000的倍数)和利息interest[i],每年的投资就可以拿到全部利息,然后累加起来继续投资利 ...
- 【HDOJ】1963 Investment
完全背包. #include <stdio.h> #include <string.h> #define max(a, b) (a>b) ? a:b ], an[]; ] ...
随机推荐
- 编程老司机带你玩转 CompletableFuture 异步编程
本文从实例出发,介绍 CompletableFuture 基本用法.不过讲的再多,不如亲自上手练习一下.所以建议各位小伙伴看完,上机练习一把,快速掌握 CompletableFuture. 个人博文地 ...
- Typora[MarkDown编辑器]+(PicGo+Github+JsDelivr)[个人图床] ,开启你的高效创作
使用Typora搭配Picgo开启你的高效创作 0x00 一切都要从MarkDown说起 富文本语言的弊端 平常我们最常用的写作工具,无非是富文本编辑器中的代表--微软家的Office Word.这种 ...
- Matplotlib数据可视化(5):柱状图与直方图
柱状图和直方图是两种非常类似的统计图,区别在于: 直方图展示数据的分布,柱状图比较数据的大小. 直方图X轴为定量数据,柱状图X轴为分类数据.因此,直方图上的每个条形都是不可移动的,X轴上的区间是连 ...
- Node的require和module.exports
node编程中最重要的思想之一就是模块,在 Node.js 模块系统中,每个文件都被视为独立的模块.这是这个思想,让javascript的大规模工程成为可能.模块化编程在前端大肆盛行,在node中导出 ...
- 06 Linux 的常用命令
Linux 刚面世时并没有图形界面,所有的操作全靠命令完成,如 磁盘操作.文件存取.目录操作.进程管理.文件权限 设定等 在职场中,大量的 服务器维护工作 都是在 远程 通过 SSH 客户端 来完成的 ...
- windows7免费永久激活方法分享
前言 我相信,这里肯定有看过我上一篇博客的同学. 我说了,为解决windows7激活问题,我会找一个比较好的方法. 首先先让大家看一看激活前windows7的计算机属性: 显示是未激活的.下面就是方法 ...
- C语言程序设计(九) 指针
第九章 指针 C程序中的变量都是存储在计算机内存特定的存储单元中的,内存中的每个单元都有唯一的地址 通过取地址运算符&可以获得变量的地址 //L9-1 #include <stdio.h ...
- mybatis探究之延迟加载和缓存
mybatis探究之延迟加载和缓存 一.什么是延迟加载 1.延迟加载的概念 在mybatis进行多表查询时,并非所有的查询都需要立即进行.例如在查询带有账户信息的用户信息时,我们们并不需要总是在加载用 ...
- ES6 第七节 ES6中新增的数组知识(1)
目录 ES6 第七节 ES6中新增的数组知识(1) 第七节 ES6中新增的数组知识(1) JSON数组格式转换 Array.of()方法: find()实例方法: ES6 第七节 ES6中新增的数组知 ...
- ASP.NET MVC5实现芒果分销后台管理系统(二):Code First快速集成EntityFramework
在上一篇文章中,我们已经搭建了整个芒果后台管理系统整个工程架构,并集成了AutoMapper,日志组件等,接下来我们将使用Entity Framework完善系统的持久化存储部分.这篇EF的构造,我将 ...