Relu优点:

1、可以使网络训练更快。

相比于sigmoid、tanh,导数更加好求,反向传播就是不断的更新参数的过程,因为其导数不复杂形式简单。

2、增加网络的非线性。

本身为非线性函数,加入到神经网络中可以是网格拟合非线性映射。

3、防止梯度消失。

当数值过大或者过小,sigmoid,tanh的导数接近于0,relu为非饱和激活函数不存在这种现象。

4、使网格具有稀疏性。

由于小于0部分为0,大于0部分才有值,所以可以减少过拟合。

softmax作用:

将神经网络的输出变为概率分布。

1、数据之和为1.

2、负数变为正数。

cross entropy

衡量两个概率分布的距离。

1、值越小,距离越近。

2、值越大,距离越远。

AlexNet优点:

(1)成功使用relu作为cnn的激活函数,并验证其效果在较深的网络超过sigmoid,成功解决了sigmoid在网络较深时的梯度弥散问题。

(2)训练时使用Dropout随机忽略一部分神经元,以避免模型过拟合。dropout虽有单独的论文论述。但是AlexNet将其实用化。通过实践证实了它的效果。在AlexNet中主要是最后几个全连接层使用了Dropout。

(3)在cnn中使用重叠的最大池化,此前cnn中普遍使用平均池化。AlexNet全部使用最大池化。避免平均池化的模糊化效果。并且让步长比池化核的尺寸小。这样池化的输出之间会有重叠和覆盖。提升了特征的丰富性。

(4)提出了LRN层,对局部神经元的活动创建竞争机制,使得其中相应比较大的值变得相对更大。并抑制其他反馈较小的神经元,增强模型的泛化能力。

(5)使用CUDA加深深度卷积网络的训练,利用GPU强大的并行计算能力。处理神经网络训练时大量的矩阵运算。AlexNet使用了两块GTX 580 GPU进行训练。同时AlexNet的设计让Gpu之间的通信只在网络的某些层进行,控制了通信的性能损耗。

(6)数据增强。随机地从256*256的原始图像中截取224*224大小的区域(以及水平旋转的镜像)对图像的RGB数据进行PCA处理,并对主成分做一个标准差为0,1高斯扰动,增加 一些噪声。

Relu激活函数的优点的更多相关文章

  1. RELU 激活函数及其他相关的函数

    RELU 激活函数及其他相关的函数 转载 2016年07月21日 20:51:17 45778 本博客仅为作者记录笔记之用,不免有很多细节不对之处. 还望各位看官能够见谅,欢迎批评指正. 更多相关博客 ...

  2. tensorflow Relu激活函数

    1.Relu激活函数 Relu激活函数(The Rectified Linear Unit)表达式为:f(x)=max(0,x). 2.tensorflow实现 #!/usr/bin/env pyth ...

  3. MINST手写数字识别(三)—— 使用antirectifier替换ReLU激活函数

    这是一个来自官网的示例:https://github.com/keras-team/keras/blob/master/examples/antirectifier.py 与之前的MINST手写数字识 ...

  4. ReLU激活函数:简单之美

    出自 http://blog.csdn.net/cherrylvlei/article/details/53149381 导语 在深度神经网络中,通常使用一种叫修正线性单元(Rectified lin ...

  5. ReLU激活函数

    参考:https://blog.csdn.net/cherrylvlei/article/details/53149381 首先,我们来看一下ReLU激活函数的形式,如下图: 单侧抑制,当模型增加N层 ...

  6. 深度学习基础系列(三)| sigmoid、tanh和relu激活函数的直观解释

    常见的激活函数有sigmoid.tanh和relu三种非线性函数,其数学表达式分别为: sigmoid: y = 1/(1 + e-x) tanh: y = (ex - e-x)/(ex + e-x) ...

  7. ReLU激活函数的缺点

    训练的时候很”脆弱”,很容易就”die”了,训练过程该函数不适应较大梯度输入,因为在参数更新以后,ReLU的神经元不会再有激活的功能,导致梯度永远都是零. 例如,一个非常大的梯度流过一个 ReLU 神 ...

  8. tf.nn.relu 激活函数

    tf.nn.relu(features, name = None) 计算校正线性:max(features, 0) 参数: features:一个Tensor.必须是下列类型之一:float32,fl ...

  9. 深度学习的激活函数 :sigmoid、tanh、ReLU 、Leaky Relu、RReLU、softsign 、softplus、GELU

    深度学习的激活函数  :sigmoid.tanh.ReLU .Leaky Relu.RReLU.softsign .softplus.GELU 2019-05-06 17:56:43 wamg潇潇 阅 ...

随机推荐

  1. eot文件

    *.eot文件 是一种压缩字库,目的是解决在网页中嵌入特殊字体的难题2.在网页中嵌入的字体只能是 OpenType 类型,其他类型的字体只有转换成 OpenType 类型(eot格式)的字体才能在网页 ...

  2. 织梦 dede runphp=yes SQL语句操作

    个人实例dede:channelartlist 下循环出 channel 栏目 中的 文章 {dede:sql sql='select * from dede_arctype where reid = ...

  3. 微信小程序语音(A)发给别人(B),也能播放,是需要先把语音上传到自己的服务器上才可以

    小程序语音(A)发给别人(B),也能播放,是需要先把语音上传到自己的服务器上才可以. https://developers.weixin.qq.com/miniprogram/dev/api/medi ...

  4. R 《回归分析与线性统计模型》page140,5.1

    rm(list = ls()) library(car) library(MASS) library(openxlsx) A = read.xlsx("data140.xlsx") ...

  5. C++的bitset(位操作使用),转载

    有些程序要处理二进制位的有序集,每个位可能包含的是0(关)或1(开)的值.位是用来保存一组项或条件的yes/no信息(有时也称标志)的简洁方法.标准库提供了bitset类使得处理位集合更容易一些.要使 ...

  6. Day6 - L - Mokia HYSBZ - 1176

    维护一个W*W的矩阵,初始值均为S.每次操作可以增加某格子的权值,或询问某子矩阵的总权值.修改操作数M<=160000,询问数Q<=10000,W<=2000000. Input 第 ...

  7. 文献阅读报告 - Social BiGAT + Cycle GAN

    原文文献 Social BiGAT : Kosaraju V, Sadeghian A, Martín-Martín R, et al. Social-BiGAT: Multimodal Trajec ...

  8. 注解方式实例化Java类

    context:component-scan标签: Sprng容器通过context:component-scan标签扫描其base-package标签属性值指定的包及其子包内的所有的类并实例化被@C ...

  9. IDA使用初步

    按空格看结构图,再按空格看汇编代码,按F5反编译 shift+F12 搜索中文字符串,通过字符串所在位置定位关键信息. 双击可能出flag的语句跳转至关键字符串. 想F5生成C伪代码,先crtl+X打 ...

  10. #pragma命令详解

    每种C和C++的实现支持对其宿主机或操作系统唯一的功能.例如,一些程序需要精确控制超出数据所在的储存空间,或着控制特定函数接受参数的方式.#pragma指示使每个编译程序在保留C和C++语言的整体兼容 ...