斐波那契

标题:斐波那契

斐波那契数列大家都非常熟悉。它的定义是:

f(x) = 1                    .... (x=1,2)
f(x) = f(x-1) + f(x-2) .... (x>2) 对于给定的整数 n 和 m,我们希望求出:
f(1) + f(2) + ... + f(n) 的值。但这个值可能非常大,所以我们把它对 f(m) 取模。
公式参见【图1.png】 但这个数字依然很大,所以需要再对 p 求模。

【数据格式】

输入为一行用空格分开的整数 n m p (0 < n, m, p < 10^18)

输出为1个整数

例如,如果输入:

3 5

程序应该输出:

再例如,输入:

11 29

程序应该输出:

资源约定:

峰值内存消耗(含虚拟机) < 256M

CPU消耗 < 2000ms

请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。

注意:主类的名字必须是:Main,否则按无效代码处理。

首先,关于斐波那契数的求取,如果使用递归法求取,会出现远远超时;迭代法求取差不多也会超时,此处,最好使用矩阵相乘法求取第n个斐波那契数。

其次,关于求取前n个斐波那契数和的问题,利用斐波那契数的性质(网上资料参考所得):S(n) = F(n+2) - 1,其中S(n)是前n个斐波那契数的和,F(n + 2)是第n+2个斐波那契数。

最后,要考虑n,m的取值问题,经过使用计算机运算检测,一般n > 100,F(n)就会超过long型最大值,所以此处建议使用BigInteger类型,来存储斐波那契数。

下面的代码仅供参考,不保证n、m、p达到10^18数量级时,大整数类型的取余不会出现内存溢出问题哦。

import java.math.BigInteger;
import java.util.Scanner; public class Main {
public static BigInteger[][] ONE = {{BigInteger.ONE, BigInteger.ONE},
{BigInteger.ONE,BigInteger.ZERO}};
public static BigInteger[][] ZERO = {{BigInteger.ZERO,BigInteger.ZERO},
{BigInteger.ZERO,BigInteger.ZERO}};
//求取矩阵ONE的n次方
public BigInteger[][] getOneOfN(long n) {
if(n == 0)
return ZERO;
if(n == 1)
return ONE;
if((n & 1) == 0) { //当n为偶数时
BigInteger[][] A = getOneOfN(n >> 1);
return multiMatrix(A, A);
}
//当n为奇数时
BigInteger[][] A = getOneOfN(n >> 1);
return multiMatrix(multiMatrix(A, A), ONE);
}
//求取矩阵A*B的值
public BigInteger[][] multiMatrix(BigInteger[][] A, BigInteger[][] B) {
BigInteger[][] result = new BigInteger[A.length][B[0].length];
for(int i = 0;i < A.length;i++)
for(int j = 0;j < B[0].length;j++)
result[i][j] = BigInteger.ZERO;
for(int i = 0;i < A.length;i++)
for(int j = 0;j < B.length;j++)
for(int k = 0;k < A[0].length;k++)
result[i][j] = result[i][j].add(A[i][k].multiply(B[k][j]));
return result;
}
//获取第n个斐波那契数
public BigInteger getFibonacci(long n) {
if(n == 1 || n == 2)
return BigInteger.ONE;
BigInteger[][] A = new BigInteger[1][2];
A[0][0] = BigInteger.ONE;
A[0][1] = BigInteger.ONE;
BigInteger[][] B = getOneOfN(n - 2);
A = multiMatrix(A, B);
return A[0][0];
} public static void main(String[] args) {
Main test = new Main();
Scanner in = new Scanner(System.in);
long n = in.nextLong();
long m = in.nextLong();
BigInteger p = in.nextBigInteger();
BigInteger result = BigInteger.ZERO;
result = test.getFibonacci(n + 2).subtract(BigInteger.ONE);
result = result.mod(test.getFibonacci(m));
result = result.mod(p);
System.out.println(result);
} }

java实现第五届蓝桥杯斐波那契的更多相关文章

  1. Java与算法之(3) - 斐波那契数列

    斐波那契数列问题:如果一对兔子每月能生1对小兔子,而每对小兔在它出生后的第三个月里,又能开始生1对小兔子,假定在不发生死亡的情况下,由一对初生的兔子开始,1年后能繁殖出多少对兔子? 首先手工计算来总结 ...

  2. 【Java算法學習】斐波那契數列問題-兔子產子經典問題

    /** * 用遞推算法求解斐波那契數列:Fn = Fn-2 +Fn-1; */ import java.util.*; public class Fibonacci { public static v ...

  3. 剑指offer编程题Java实现——面试题9斐波那契数列

    题目:写一个函数,输入n,求斐波那契数列的第n项. package Solution; /** * 剑指offer面试题9:斐波那契数列 * 题目:写一个函数,输入n,求斐波那契数列的第n项. * 0 ...

  4. java实现第五届蓝桥杯殖民地

    殖民地 带着殖民扩张的野心,Pear和他的星际舰队登上X星球的某平原.为了评估这块土地的潜在价值,Pear把它划分成了M*N格,每个格子上用一个整数(可正可负)表示它的价值. Pear要做的事很简单- ...

  5. java实现第五届蓝桥杯LOG大侠

    LOG大侠 atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称Log大侠. 一天,Log大侠的好友 drd 有一些整数序列需要变换,Log大侠正好施展法力- 变换的规则是: 对其某个 ...

  6. java实现第五届蓝桥杯生物芯片

    生物芯片 X博士正在研究一种生物芯片,其逻辑密集度.容量都远远高于普通的半导体芯片. 博士在芯片中设计了 n 个微型光源,每个光源操作一次就会改变其状态,即:点亮转为关闭,或关闭转为点亮. 这些光源的 ...

  7. java实现第五届蓝桥杯供水设施

    供水设施 X星球的居民点很多.Pear决定修建一个浩大的水利工程,以解决他管辖的N个居民点的供水问题.现在一共有N个水塔,同时也有N个居民点,居民点在北侧从1号到N号自西向东排成一排:水塔在南侧也从1 ...

  8. java实现第五届蓝桥杯排列序数

    排列序数 如果用a b c d这4个字母组成一个串,有4!=24种,如果把它们排个序,每个串都对应一个序号: abcd 0 abdc 1 acbd 2 acdb 3 adbc 4 adcb 5 bac ...

  9. java实现第五届蓝桥杯幂一矩阵

    幂一矩阵 天才少年的邻居 atm 最近学习了线性代数相关的理论,他对"矩阵"这个概念特别感兴趣.矩阵中有个概念叫做幂零矩阵.对于一个方阵 M ,如果存在一个正整数 k 满足 M^k ...

随机推荐

  1. 题解 P4296 【[AHOI2007]密码箱】

    由题意有 \(x^2\equiv 1\;mod\;n\) 对题目的公式进行变形 \(x^2-1=k\times n\) \((x+1)(x-1)=k\times n\) 由唯一分解定理,我们构造\(a ...

  2. java 版本比较

    public class version { public static int compareVersion(String version1, String version2) throws Exc ...

  3. vue v-for 渲染input 输入有问题 解决方案

    v-for循环input标签的时候输入信息两个输入框一同显示输入信息 解决方案: <input :placeholder="items.title" v-model = &q ...

  4. Django组件content-type使用方法详解

    前言 参考博客:https://www.zhangshengrong.com/p/zD1yQJwp1r/ 一个表和多个表进行关联,但具体随着业务的加深,表不断的增加,关联的数量不断的增加,怎么通过一开 ...

  5. Django模板之模板标签

    标签比变量更加复杂:一些在输出中创建文本,一些通过循环或逻辑来控制流程,一些加载其后的变量将使用到的额外信息到模版中. 一些标签需要开始和结束标签 (例如:{% tag %} ...标签 内容 ... ...

  6. JavaScript基础技术总结

    javascript的作用 HTML网页运行在浏览器端,与用户没有交互功能,用户访问网页的时候只能看,如果网页没有程序员去更新,永远是一成不变的.JavaScript就是可以让程序运行在网页上,提高客 ...

  7. day19 生成器函数

    生成器总结: 语法上和函数类似:生成器函数和常规函数几乎是一样的.它们都是使用def语句进行定义,差别在于,生成器使用yield语句返回一个值,而常规函数使用return语句返回一个值. 自动实现迭代 ...

  8. 剑指Offer之变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:由于青蛙每次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级,故除了 ...

  9. 【真相揭秘】requests获取网页编码乱码本质

    有没有被网页编码抓狂,怎么转都是乱码. 通过查看requests源代码,才发现是库本身历史原因造成的. 作者是严格http协议标准写这个库的,<HTTP权威指南>里第16章国际化里提到,如 ...

  10. JVM调优总结(四)-分代垃圾回收详述

    为什么要分代 分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的.因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率. 在Java程序运行的过程中,会产生大量的对象, ...