It is Professor R’s last class of his teaching career. Every time Professor R taught a class, he gave a special problem for the students to solve. You being his favourite student, put your heart into solving it one last time.

You are given two polynomials f(x)=a0+a1x+⋯+an−1xn−1 and g(x)=b0+b1x+⋯+bm−1xm−1, with positive integral coefficients. It is guaranteed that the cumulative GCD of the coefficients is equal to 1 for both the given polynomials. In other words, gcd(a0,a1,…,an−1)=gcd(b0,b1,…,bm−1)=1. Let h(x)=f(x)⋅g(x). Suppose that h(x)=c0+c1x+⋯+cn+m−2xn+m−2.

You are also given a prime number p. Professor R challenges you to find any t such that ct isn’t divisible by p. He guarantees you that under these conditions such t always exists. If there are several such t, output any of them.

As the input is quite large, please use fast input reading methods.

Input

The first line of the input contains three integers, n, m and p (1≤n,m≤106,2≤p≤109), — n and m are the number of terms in f(x) and g(x) respectively (one more than the degrees of the respective polynomials) and p is the given prime number.

It is guaranteed that p is prime.

The second line contains n integers a0,a1,…,an−1 (1≤ai≤109) — ai is the coefficient of xi in f(x).

The third line contains m integers b0,b1,…,bm−1 (1≤bi≤109) — bi is the coefficient of xi in g(x).

Output

Print a single integer t (0≤t≤n+m−2) — the appropriate power of x in h(x) whose coefficient isn’t divisible by the given prime p. If there are multiple powers of x that satisfy the condition, print any.

Examples

inputCopy

3 2 2

1 1 2

2 1

outputCopy

1

inputCopy

2 2 999999937

2 1

3 1

outputCopy

2

Note

In the first test case, f(x) is 2x2+x+1 and g(x) is x+2, their product h(x) being 2x3+5x2+3x+2, so the answer can be 1 or 2 as both 3 and 5 aren’t divisible by 2.

In the second test case, f(x) is x+2 and g(x) is x+3, their product h(x) being x2+5x+6, so the answer can be any of the powers as no coefficient is divisible by the given prime.

题意:

给定两个多项式长度 n 和 m ,再给定每一项的系数,由常数项到最高次项排序,其中每个多项式的系数的GCD=1。

然后再给定一个质数 p

问两个多项式相乘后得到的第三个多项式中,哪一项的系数不是 p 的倍数,输出这个项的x的幂次(下标)

如果am∗bn Mod p!=0a_m*b_n\ Mod\ p!=0am​∗bn​ Mod p!=0,那么有am Mod p!=0a_m \ Mod \ p!=0am​ Mod p!=0且bn Mod p!=0b_n \ Mod \ p!=0bn​ Mod p!=0,因为幂是低次幂向高次幂排列,乘积也是如此,因此我们只要找到最小非0次幂不能整除P,即可。即找到最小的m和n即可。

第am项∗第bn项=am∗xm∗bn∗xn第a_m项*第b_n项=a_m*x^m*b_n*x^n第am​项∗第bn​项=am​∗xm∗bn​∗xn是第n+m项

可行性:本原多项式

如果还有问题的话,欢迎DL补充,小弟不胜感激,洗耳恭听。

#include <bits/stdc++.h>
using namespace std;
template <typename t>
void read(t &x)
{
char ch = getchar();
x = 0;
t f = 1;
while (ch < '0' || ch > '9')
f = (ch == '-' ? -1 : f), ch = getchar();
while (ch >= '0' && ch <= '9')
x = x * 10 + ch - '0', ch = getchar();
x *= f;
} #define wi(n) printf("%d ", n)
#define wl(n) printf("%lld ", n)
#define rep(m, n, i) for (int i = m; i < n; ++i)
#define rrep(m, n, i) for (int i = m; i > n; --i)
#define P puts(" ")
typedef long long ll;
#define MOD 1000000007
#define mp(a, b) make_pair(a, b)
#define N 200005
#define fil(a, n) rep(0, n, i) read(a[i])
//---------------https://lunatic.blog.csdn.net/-------------------//
int main()
{
int m, n, p, tem;
read(n), read(m), read(p);
ll ans1 = 0, ans2 = 0;
for (int i = 0; i < n; i++)
{
read(tem);
tem %= p;
if (tem && !ans1)
ans1 = i;
}
for (int i = 0; i < m; i++)
{
read(tem);
tem %= p;
if (tem && !ans2)
ans2 = i;
} cout << ans1 +ans2 << endl;
}

写在最后:

我叫风骨散人,名字的意思是我多想可以不低头的自由生活,可现实却不是这样。家境贫寒,总得向这个世界低头,所以我一直在奋斗,想改变我的命运给亲人好的生活,希望同样被生活绑架的你可以通过自己的努力改变现状,深知成年人的世界里没有容易二字。目前是一名在校大学生,预计考研,热爱编程,热爱技术,喜欢分享,知识无界,希望我的分享可以帮到你!

如果有什么想看的,可以私信我,如果在能力范围内,我会发布相应的博文!

感谢大家的阅读!

Codeforce-CodeCraft-20 (Div. 2)-C. Primitive Primes(本原多项式+数学推导)的更多相关文章

  1. CodeCraft-20 (Div. 2) C. Primitive Primes (数学)

    题意:给你两个一元多项式\(f(x)\)和\(g(x)\),保证它们每一项的系数互质,让\(f(x)\)和\(g(x)\)相乘得到\(h(x)\),问\(h(x)\)是否有某一项系数不被\(p\)整除 ...

  2. CF #305(Div.2) D. Mike and Feet(数学推导)

    D. Mike and Feet time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  3. CF1316C Primitive Primes

    CF1316C [Primitive Primes] 给出两个多项式\(a_0+a_1x+a_2x^2+\dots +a_{n-1}x^{n-1}\)和\(b_0+b_1x+b_2x^2+ \dots ...

  4. codeforce round#466(div.2) B. Our Tanya is Crying Out Loud

    B. Our Tanya is Crying Out Loud time limit per test1 second memory limit per test256 megabytes input ...

  5. codeforce round #467(div.2)

    A. Olympiad 给出n个数,让你找出有几个非零并且不重复的数 所以用stl的set //#define debug #include<stdio.h> #include<ma ...

  6. codeforce round#466(div.2)C. Phone Numbers

    C. Phone Numbers time limit per test2 seconds memory limit per test256 megabytes inputstandard input ...

  7. Codeforce Round #555 Div.3 D - N Problems During K Days

    构造题 话说挺水的题..当时怎么就WA到自闭呢.. 先把每个位置按照最低要求填满,也就是相差1..然后从最后一位开始把剩下的数加上,直到不能加为止. #include <bits/stdc++. ...

  8. Codeforce Round #554 Div.2 C - Neko does Maths

    数论 gcd 看到这个题其实知道应该是和(a+k)(b+k)/gcd(a+k,b+k)有关,但是之后推了半天,思路全无. 然而..有一个引理: gcd(a, b) = gcd(a, b - a) = ...

  9. 喵哈哈村的魔法考试 Round #20 (Div.2) 题解

    题解: A 喵哈哈村的跳棋比赛 题解:其实我们要理解题意就好了,画画图看看这个题意.x<y,那么就交换:x>y,那么x=x%y. 如果我们经过很多次,或者y<=0了,那么就会无限循环 ...

随机推荐

  1. spring03

    学习了spring的数据源的使用以及spring的作用域引入外部属性文件 对应的bean的xml文件和properties文件如下 <?xml version="1.0" e ...

  2. LInux文件管理篇,权限管理

    一: chgrp 改变文件所属用户组 chown 改变文件所有者 注意: 1.使用格式 chgrp/chown     user      file eg: chgrp lanyue permissi ...

  3. Flask 入门(十)

    flask 中的 db.relationship() 上文提到的方法,也可以找到狗的主人,但是,方便吗?,如果一个人有多只狗呢? 承接上文,修改main.py中的代码如下: #encoding:utf ...

  4. 史上最详细mac安装Qt教程

    史上最详细mac安装Qt教程,小白看过来! 这是一篇非常适合Qt入门小白的的安装Qt教程,因为这学期我们小组的一个关于高速救援的项目要用到Qt与web进行交互式展现相关的图像,由于没有MSVC这个插件 ...

  5. "额外插入的文本"组件:<ins> —— 快应用组件库H-UI

     <import name="ins" src="../Common/ui/h-ui/text/c_tag_underline"></imp ...

  6. GitHub 热点速览 Vol.16:化身蒙娜丽莎和乔布斯对话

    摘要:妙趣横生,上周的 GitHub 热点的关键词.无论是让你化身为爱因斯坦开启会议脑暴模式 avatarify,还是和上周人人都是抠图师项目的同门项目 3D 照片修复:3d-photo-inpain ...

  7. ModuleNotFoundError: No module named 'sklearn.cross_validation'

    本文为CSDN博主「不服输的南瓜」的原创文章,遵循 CC 4.0 BY-SA 版权协议 原文链接 ModuleNotFoundError: No module named 'sklearn.cross ...

  8. MySQL的事务隔离级别是什么?

    我是平也,这有一个专注Gopher技术成长的开源项目「go home」 背景介绍 想必事务大家都已经非常熟悉了,它是一组SQL组成的一个执行单元,要么全执行要么全不执行,这也是它的一个特性--原子性. ...

  9. stand up meeting 11/17/2015

    今日工作总结: 冯晓云:代表组内参加了北航软工M1检查,有幸在工作展开之前先观摩别人的工作,吸取经验和教训:现在看来,当时对往届ASE学员的采访还不够深入,只说统筹分工团结合作还是有些空,具体的任务划 ...

  10. git多人协作操作流程

    git协作工作流程 git checkout work 自己工作分支工作 git commit -a -m ''自己工作分支提交 git checkout master 切换到主分支 git pull ...