4. Decision Tree
一般的,一颗决策树包含一个根结点、若干内部结点和若干叶结点;叶节点对应于决策结果,其他每个结点则对应于一个属性测试;每个结点包含的样本集合根据属性测试的结果被划分到子结点中;根结点包含样本全集。从根结点到每个叶子结点的路径对应了一个判定测试序列。决策树学习的目的是为了产生一颗泛化能力强,即处理位见示例能力强的决策树,其基本流程遵循简单且直观的“分而支之”策略:
在决策树算法中,有3种情况会导致递归返回:
- 当前节点包含的样本属于同一类,无需划分
- 当前节点属性集为空,或是所有样本在所有属性上取值相同,无法划分
- 当前节点包含的样本集合为空,不能划分
划分选择:
1. information gain 信息增益 $a_{\star} = \arg\max\limits_{a\in{A}} Gain(D, a)$
information entropy信息熵是度量样本集合纯度最常用的指标。假定当前样本集合$D$中第$k$类样本所占比例为$p_k(k=1,2,...,\lvert{y}\rvert)$,则$D$的information entropy是
$Ent(D) = - \sum_{k=1}^{\lvert{y}\rvert}p_klog_2^{p_k}$
$Ent(D)$的值越小,则$D$的纯度越高
那么对于$D$的各个结点$D_v$,我们可以算出$D_v$的information entropy,再考虑到不同的分支结点所包含的样本数不均匀,给分支赋予权重$\frac{\lvert{D_v}\rvert}{\lvert{D}\rvert}$,这样得到information gain:
$Gain(D,a_{\star}) = Ent(D) - \sum_{v=1}^{V} \frac{\lvert{D_v}\rvert}{\lvert{D}\rvert}Ent(D_v)$
一般来说 infoermation gain 越大,意味着使用属性$a$ 来进行划分所得“纯度提升”越大。这种分裂方式对于可取值数目较多的属性有所偏好。
2. gain ratio 增益比 $a_{\star} = \arg\max\limits_{a\in{A}} Gain\_ratio(D, a)$
$Gain\_ratio(D, a) = \frac{ Gain(D, a)}{IV(a)}$
$IV(a) = - \sum_{v=1}^{V} \frac{\lvert{D_v}\rvert}{\lvert{D}\rvert}log_2{\frac{\lvert{D_v}\rvert}{\lvert{D}\rvert}}$
需要注意的是:实际使用gain ratio时:先从候选划分属性中找到信息增益高于平均水平的属性,再从中选择增益比最高的。这种分裂方式对可取值数目较少的属性有所偏好.
3. CART Gini index基尼指数 $a_{\star} = \arg\min\limits_{a\in{A}} Gini\_index\_ratio(D, a)$
$Gini(D) = \sum_{k=1}^{\lvert{y}\rvert} \sum_{k^{,}\neq{k}}p_kp_{k^{,}} = 1-\sum_{k=1}^{\lvert{y}\rvert}p_k^2$
$Gini\_index(D,a) = \sum_{v=1}^{V} \frac{\lvert{D_v}\rvert}{D}Gini(D_v)$
CART与传统DT相比,分裂中只有两个结点。
4. Decision Tree的更多相关文章
- Spark MLlib - Decision Tree源码分析
http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或ran ...
- 决策树Decision Tree 及实现
Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报 分类: Data Mining(25) Pyt ...
- Gradient Boosting Decision Tree学习
Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple ...
- 使用Decision Tree对MNIST数据集进行实验
使用的Decision Tree中,对MNIST中的灰度值进行了0/1处理,方便来进行分类和计算熵. 使用较少的测试数据测试了在对灰度值进行多分类的情况下,分类结果的正确率如何.实验结果如下. #Te ...
- Sklearn库例子1:Sklearn库中AdaBoost和Decision Tree运行结果的比较
DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4 ...
- 用于分类的决策树(Decision Tree)-ID3 C4.5
决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分, ...
- OpenCV码源笔记——Decision Tree决策树
来自OpenCV2.3.1 sample/c/mushroom.cpp 1.首先读入agaricus-lepiota.data的训练样本. 样本中第一项是e或p代表有毒或无毒的标志位:其他是特征,可以 ...
- GBDT(Gradient Boosting Decision Tree)算法&协同过滤算法
GBDT(Gradient Boosting Decision Tree)算法参考:http://blog.csdn.net/dark_scope/article/details/24863289 理 ...
- Gradient Boost Decision Tree(&Treelink)
http://www.cnblogs.com/joneswood/archive/2012/03/04/2379615.html 1. 什么是Treelink Treelink是阿里集团内部 ...
- (转)Decision Tree
Decision Tree:Analysis 大家有没有玩过猜猜看(Twenty Questions)的游戏?我在心里想一件物体,你可以用一些问题来确定我心里想的这个物体:如是不是植物?是否会飞?能游 ...
随机推荐
- Note3 :《集体智慧编程》用户相似度计算
欧几里德距离评价: 以经过人们一致评价的物品为坐标轴,然后将参与评价的人绘制到图上,并考察他们彼此之间的距离远近.计算出每一轴向上的差值,求平方之后再相加,最后对总和取平方根. # -*- codin ...
- AngularJS 表格
ng-repeat 指令可以完美的显示表格. 使用 angular 显示表格是非常简单的: <!DOCTYPE html> <html> <head> <me ...
- ASP.NET MVC与ASP.NET Web Form简单区别与适用场景
概论: Asp.net 微软 提供web开发框架或者技术.分Web Form和ASP.NET MVC.下面简单说明各自优缺点及使用场景. Web Form 优点: 1.支持丰富的服务器控件.如:Gr ...
- SQL Server 2012 新增语法
--连接两个字符串. CONCAT(TelePhone,UserName,' : ',LoginVCode) FROM [dbo].[TB_NUsers] --SQL Server2012新增了两个逻 ...
- Js中最常见的异常捕捉 TryCatch
今天检查网页的时候因为一段Js报错 导致下面的js没有执行(一个js动态添加的弹窗没有出现) 原因是因为 一个属性本身是undefined 找不到 无法给他赋值 这里的原因很简单 也已经修改好了但是这 ...
- YUV RGB播放器 打开, 显示RGB数据
可以查看RGB像素数据 可以通过菜单栏打开像素数据文件,也可以通过拖拽方式打开文件.如果文件名称中包含了“{w}x{h}”这样的字符串(例如“test_320x420.yuv”),系统会自动解析为该像 ...
- CSS3动画效果-7.13
例如: <body> <div class="div1"></div> </body> CSS: @keyframes myfirs ...
- 互联网+下PDA移动智能手持POS超市收银开单软件
是一套专为中小超市.专卖店设计的收银管理软件,广泛应用于中小超市(百货商店).化妆品店.婴幼儿用品店.玩具店.保健品店.茶叶店. 电器.文具图书.手机通讯器材店等行业的中小型店面店铺.该系统具有完善的 ...
- XE2 泛型练习1
要引用单元 System.Generics.Collections implementation {$R *.dfm}var i: Integer; str: string; procedure TF ...
- Android的5大组件
1. Activity组件 Activity组件通常的表现形式是一个单独的界面(screen).每个Activity都是一个单独的类,它扩展实现了Activity基础类.这个类显示为一个由Views组 ...