一般的,一颗决策树包含一个根结点、若干内部结点和若干叶结点;叶节点对应于决策结果,其他每个结点则对应于一个属性测试;每个结点包含的样本集合根据属性测试的结果被划分到子结点中;根结点包含样本全集。从根结点到每个叶子结点的路径对应了一个判定测试序列。决策树学习的目的是为了产生一颗泛化能力强,即处理位见示例能力强的决策树,其基本流程遵循简单且直观的“分而支之”策略:

在决策树算法中,有3种情况会导致递归返回:

  • 当前节点包含的样本属于同一类,无需划分
  • 当前节点属性集为空,或是所有样本在所有属性上取值相同,无法划分
  • 当前节点包含的样本集合为空,不能划分

划分选择:

1. information gain 信息增益  $a_{\star} = \arg\max\limits_{a\in{A}} Gain(D, a)$

information entropy信息熵是度量样本集合纯度最常用的指标。假定当前样本集合$D$中第$k$类样本所占比例为$p_k(k=1,2,...,\lvert{y}\rvert)$,则$D$的information entropy是

$Ent(D) = - \sum_{k=1}^{\lvert{y}\rvert}p_klog_2^{p_k}$

$Ent(D)$的值越小,则$D$的纯度越高

那么对于$D$的各个结点$D_v$,我们可以算出$D_v$的information entropy,再考虑到不同的分支结点所包含的样本数不均匀,给分支赋予权重$\frac{\lvert{D_v}\rvert}{\lvert{D}\rvert}$,这样得到information gain:

$Gain(D,a_{\star}) = Ent(D) - \sum_{v=1}^{V} \frac{\lvert{D_v}\rvert}{\lvert{D}\rvert}Ent(D_v)$

一般来说 infoermation gain 越大,意味着使用属性$a$ 来进行划分所得“纯度提升”越大。这种分裂方式对于可取值数目较多的属性有所偏好。

2. gain ratio 增益比  $a_{\star} = \arg\max\limits_{a\in{A}} Gain\_ratio(D, a)$

$Gain\_ratio(D, a) = \frac{ Gain(D, a)}{IV(a)}$

$IV(a) = - \sum_{v=1}^{V} \frac{\lvert{D_v}\rvert}{\lvert{D}\rvert}log_2{\frac{\lvert{D_v}\rvert}{\lvert{D}\rvert}}$

需要注意的是:实际使用gain ratio时:先从候选划分属性中找到信息增益高于平均水平的属性,再从中选择增益比最高的。这种分裂方式对可取值数目较少的属性有所偏好.

3. CART Gini index基尼指数  $a_{\star} = \arg\min\limits_{a\in{A}} Gini\_index\_ratio(D, a)$

$Gini(D) = \sum_{k=1}^{\lvert{y}\rvert} \sum_{k^{,}\neq{k}}p_kp_{k^{,}} = 1-\sum_{k=1}^{\lvert{y}\rvert}p_k^2$

$Gini\_index(D,a) = \sum_{v=1}^{V} \frac{\lvert{D_v}\rvert}{D}Gini(D_v)$

CART与传统DT相比,分裂中只有两个结点。

4. Decision Tree的更多相关文章

  1. Spark MLlib - Decision Tree源码分析

    http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或ran ...

  2. 决策树Decision Tree 及实现

    Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报  分类: Data Mining(25)  Pyt ...

  3. Gradient Boosting Decision Tree学习

    Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple ...

  4. 使用Decision Tree对MNIST数据集进行实验

    使用的Decision Tree中,对MNIST中的灰度值进行了0/1处理,方便来进行分类和计算熵. 使用较少的测试数据测试了在对灰度值进行多分类的情况下,分类结果的正确率如何.实验结果如下. #Te ...

  5. Sklearn库例子1:Sklearn库中AdaBoost和Decision Tree运行结果的比较

    DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4 ...

  6. 用于分类的决策树(Decision Tree)-ID3 C4.5

    决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分, ...

  7. OpenCV码源笔记——Decision Tree决策树

    来自OpenCV2.3.1 sample/c/mushroom.cpp 1.首先读入agaricus-lepiota.data的训练样本. 样本中第一项是e或p代表有毒或无毒的标志位:其他是特征,可以 ...

  8. GBDT(Gradient Boosting Decision Tree)算法&协同过滤算法

    GBDT(Gradient Boosting Decision Tree)算法参考:http://blog.csdn.net/dark_scope/article/details/24863289 理 ...

  9. Gradient Boost Decision Tree(&Treelink)

    http://www.cnblogs.com/joneswood/archive/2012/03/04/2379615.html 1.      什么是Treelink Treelink是阿里集团内部 ...

  10. (转)Decision Tree

    Decision Tree:Analysis 大家有没有玩过猜猜看(Twenty Questions)的游戏?我在心里想一件物体,你可以用一些问题来确定我心里想的这个物体:如是不是植物?是否会飞?能游 ...

随机推荐

  1. Linux与Windows xp操作系统启动过程

    Linux启动过程: 第一步,加载BIOS,当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的重要,以至于计算机必须在最开始就找到它.这是因为BIOS中包含了CPU的相关信息.设备 ...

  2. 机器学习实战-python相关软件库的安装

    1 安装python 2 安装sublime text2 3 安装NumPy.Matplotlib http://book.51cto.com/art/201401/426522.htm Matplo ...

  3. Ios8,Xcode6下 设置Launch Image 启动图片

    1x--320*480  2x--640*960  Retina 4--640*1136  Retina HD5.5--621*1104   Retina HD4.7--375*667

  4. Android 自动化测试—robotium(九) Junit_report测试报告重定向输出到终端SDCard

    借鉴网上相关资料主要用于无root权限的终端.主要分为以下三步: 一.重写InstrumentationTestRunner类: package com.exmaple.test; import ja ...

  5. CentOS 6.5 下安装 Redis 2.8.7

    wget http://download.redis.io/redis-stable.tar.gz tar xvzf redis-stable.tar.gz cd redis-stable make ...

  6. 2016-2017 ACM-ICPC, NEERC, Moscow Subregional Contest

    A. Altitude 从小到大加入每个数,用set查找前驱和后继即可. 时间复杂度$O(n\log n)$. #include <bits/stdc++.h> using namespa ...

  7. Sass和compass 安装 和配合grunt实时显示 [Sass和compass学习笔记]

    demo 下载http://vdisk.weibo.com/s/DOlfkrAWjkF/1401192855 为什么要学习Sass和compass ?提高站独立和代码产品化的绝密武器,尤其是程序化cs ...

  8. 【Redis】简介与安装

    Linux 安装 [root@redis ~]# wget http://download.redis.io/releases/redis-2.8.19.tar.gz 解压缩redis[root@ha ...

  9. 2016 ECJTU - STL

    1.ECJTU-STL重挂 STL 2.总结:学长出的题,本来还想ak的,结果又被虐了... 3.标程和数据:http://pan.baidu.com/s/1qYzXY2K 01    水 02  水 ...

  10. JAVA_Android APK反编译就这么简单 详解(附图)

    在学习Android开发的过程你,你往往会去借鉴别人的应用是怎么开发的,那些漂亮的动画和精致的布局可能会让你爱不释手,作为一个开发者,你可能会很想知道这些效果界面是怎么去实现的,这时,你便可以对改应用 ...