图片猛戳链接

锋利的JQuery —— 选择器的更多相关文章

  1. 锋利的jQuery读书笔记---选择器

    前段时间入手了锋利的jQuery(第二版),想着加强下自己的js能力,可前段时间一只在熟悉Spring和Hibernate.最近抽时间开始读这本书了,随便也做了些记录. 读书的过程是边看边代码测试,所 ...

  2. 《锋利的JQuery》读书要点笔记1——认识JQuery&&选择器

    <锋利的jQuery>源码下载,包括了这本书中全部代码以及用到的CSS文件 第一章 认识jQuery jQuery是个Js库.首先该明确的一点是:在jQuery库中$就是jQuery的一个 ...

  3. 《锋利的jQuery(第2版)》笔记-第2章-jQuery选择器

    选择器是jQuery的根基,在jQuery中,对事件处理.遍历DOM和Ajax操作都依赖于选择器.熟练使用选择器,不仅可以简化代码,而且可以达到事半功倍的效果. 2.1 jQuery选择器是什么 1. ...

  4. jQuery选择器和DOM操作——《锋利的jQuery》(第2版)读书笔记1

    第1章 认识jQuery jQuery有以下优势: 轻量级: 强大的选择器: 出色的DOM操作的封装: 可靠的事件处理机制: 完善的Ajax: 不污染顶级变量: 出色的浏览器兼容性: 链式操作方式: ...

  5. 【学习笔记】锋利的jQuery(一)选择器

    一.要点阐述 1,jQuery创建于2006年1月的一个开源项目,强调理念是“write less,do more”,压缩后大小30KB左右.. 2,jQuery里的方法都被设计程自动操作对象集合,而 ...

  6. JQuery选择器——《锋利的JQuery》

    刚学CSS的时候我们已经接触了选择器,其实就是按照一定的规则选择出来我们想要获取到的元素.在这里,既然选择了用jQuery选择器,首先来谈谈JQuery选择器的优势: 1.简洁的写法:$()函数在很多 ...

  7. 2 《锋利的jQuery》jQuery选择器

    tip1:jquery检查某个元素是否存在:if($("#tt").length>0){}或者if($("#tt")[0]){} 先说css选择器有: 标 ...

  8. 锋利的jQuery ——jQuery选择器(二)

    一.jQuery选择器 1)CSS选择器 CSS选择器有:1>标签选择器  E{CSS规则} 2>ID选择器   #ID{CSS规则} 3>类选择器  E.className{CSS ...

  9. 锋利的jQuery学习笔记之jQuery选择器

    在介绍jQuery选择器之前,先简单介绍一下CSS选择器---> 一.CSS选择器 常见的CSS选择器有以下几种: 选择器 语法 描述 示例 标签选择器 E{CSS规则} 以文档元素为选择符 t ...

随机推荐

  1. Windows下nginx+php配置

    1. 首先,将 nginx.conf 中的 PHP 配置注释去掉. # pass the PHP scripts to FastCGI server listening on # #location ...

  2. 高性能 CSS3 动画

    注:本文出自腾讯AlloyTeam的元彦,文章也可以在github上浏览.请尊重版权,转载请注明来源,多谢-- 高性能移动Web相较PC的场景需要考虑的因素也相对更多更复杂,我们总结为以下几点: 流量 ...

  3. extjs6环境

    安装JDK http://www.oracle.com/technetwork/java/javase/downloads/ 安装到指定路径,例如D:\Java配置环境变量 此电脑—属性—高级系统设置 ...

  4. angularjs的四大特征

    angularjs四大特性: 1.MVC模式: Model:数据,其实就是angular变量($scope.XX,$rootScope.XX); View:数据的呈现,Html+Directive(指 ...

  5. openssl证书制作详细教程

    自签名证书及验证 模拟证书涉及的角色 创建证书目录 mkdir ~/certs cd ~/certs 认证机构.网站.浏览器/用户 mkdir root web user 机构自签名证书生成和发布 生 ...

  6. iOS 字符串转son  json转字符串

    + (NSString*)dictionaryToJson:(NSDictionary *)dic {     NSError *parseError = nil;    NSData *jsonDa ...

  7. [UCSD白板题] Huge Fibonacci Number modulo m

    Problem Introduction The Fibonacci numbers are defined as follows: \(F_0=0\), \(F_1=1\),and \(F_i=F_ ...

  8. 每天记一些php函数,jQuery函数和linux命令(一)

    简介:学习完了php和jQuery之后,对函数的记忆不到位,导致很多函数没记住,所以为了促进自己的记忆,每天花一点时间来写这个博客. 时间:2016-12-18    地点:太原    天气:晴 一. ...

  9. ubuntu网络配置&&ubuntu apt-get错误解决办法

    网络配置: 方式1:网卡通过DHCP自动获取IP地址 $ sudo gedit /etc/network/interfaces # 修改文件/etc/network/interfaces如下文 #-- ...

  10. CSDDN特约专稿:个性化推荐技术漫谈

    本文引自http://i.cnblogs.com/EditPosts.aspx?opt=1 如果说过去的十年是搜索技术大行其道的十年,那么个性化推荐技术将成为未来十年中最重要的革新之一.目前几乎所有大 ...