数学优化方法在机器学习算法中至关重要,本篇博客主要来简单介绍下Conjugate Gradient(共轭梯度法,以下简称CG)算法,内容是参考的文献为:An Introduction to the Conjugate Gradient Method Without the Agonizing Pain,具体细节大家还需仔细阅读那篇文章,这篇博客并不是重现那篇论文的内容,只是简单的梳理下CG算法的流程,以及它的重要思路,方便大家理解CG算法。

  首先我们需要解决的问题是:求满足线性方程(1):的解x.

  那么有人就这么认为了:这个解x不就是吗?对,这样说也不能算错,但是如果A不可逆那么x这样就解不出来了。另外当A矩阵的尺度非常大时(比如几百万维),即使其逆存在,这样计算的计算量也太大。而CG算法则可以通过少数的几步迭代来求出其近似解,虽然求出的解是近似的,但是其精度可以达到很高,完全可以满足我们的需求。

  下面就来看看CG算法实现时的大概流程:

  1. 随机选取一个初始点,记为,并记为此时方程(1)的残差,记第一个搜索方向为,搜索步长为.

  2. 现在假设我们已经按照某个迭代公式在第k步求出了,此时的残差,前面k次的搜索方向分别为,很明显这些变量都是已知的,而现在我们需要求的是第k次的搜索方向.在CG理论中,有这么一个假设,即,的线性组合,记为.

  3. 为了求出,就必须求出系数,怎么求呢?CG理论中另外一个性质就是:这k个向量关于A共轭,即满足共轭方程,其中0<=j<=k-1. 下面就可以利用该性质列出k个方程来求解这些系数了,其结果为:当0<=j<k-1时,系数;当j=k-1时,系数. 因此此时的搜索方向.

  4. 既然的值有了,搜索方向也有了,下一步就改确定搜索步长了,求它的思想是使取得极值,即导数为0。一旦求出了,则下一个迭代点也就求出了。表达式对求导为0后可求得.

  5. 循环步骤2,3,4,直到满足收敛条件。

  上面只是CG算法的基本版本,而常见的CG算法版本是针对上面的计算公式作了进一步推导,利用Krylov 子空间的一些性质,最后简化为:,同时对残差也是经过迭代得到(此处省略)。 由简化前后(此处省略N公式)对比可知,将原先表达式中一些矩阵和向量的乘积运算量减小了,因为很大一部分矩阵乘向量都转换成了向量乘向量。

  最后附上论文中关于CG算法的流程图,大家可以参考上面5个步骤来理解CG的主要思路,本博客中的符号可能和论文中的不一定相同,且公式也不一定是正确的,博文只是让大家知道这些公式是由什么理论推出的,有个宏观认识,一切需以论文中的内容为主。

  

  参考资料:

  Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing pain, Carnegie Mellon University, Pittsburgh, PA.

机器学习&数据挖掘笔记_12(对Conjugate Gradient 优化的简单理解)的更多相关文章

  1. 对Conjugate Gradient 优化的简单理解

    对Conjugate Gradient 优化的简单理解) 机器学习&数据挖掘笔记_12(对Conjugate Gradient 优化的简单理解) 数学优化方法在机器学习算法中至关重要,本篇博客 ...

  2. 机器学习&数据挖掘笔记_15(关于凸优化的一些简单概念)

    没有系统学过数学优化,但是机器学习中又常用到这些工具和技巧,机器学习中最常见的优化当属凸优化了,这些可以参考Ng的教学资料:http://cs229.stanford.edu/section/cs22 ...

  3. 机器学习&数据挖掘笔记(常见面试之机器学习算法思想简单梳理)

    机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 前言: 找工作时( ...

  4. [转]机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) 转自http://www.cnblogs.com/tornadomeet/p/3395593.html 前言: 找工作时(I ...

  5. 机器学习&数据挖掘笔记_14(GMM-HMM语音识别简单理解)

    为了对GMM-HMM在语音识别上的应用有个宏观认识,花了些时间读了下HTK(用htk完成简单的孤立词识别)的部分源码,对该算法总算有了点大概认识,达到了预期我想要的.不得不说,网络上关于语音识别的通俗 ...

  6. 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

    前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考 ...

  7. 机器学习&数据挖掘笔记_25(PGM练习九:HMM用于分类)

    前言: 本次实验是用EM来学习HMM中的参数,并用学好了的HMM对一些kinect数据进行动作分类.实验内容请参考coursera课程:Probabilistic Graphical Models 中 ...

  8. 李宏毅老师机器学习课程笔记_ML Lecture 3-1: Gradient Descent

    引言: 这个系列的笔记是台大李宏毅老师机器学习的课程笔记 视频链接(bilibili):李宏毅机器学习(2017) 另外已经有有心的同学做了速记并更新在github上:李宏毅机器学习笔记(LeeML- ...

  9. 机器学习&数据挖掘笔记_24(PGM练习八:结构学习)

    前言: 本次实验包含了2部分:贝叶斯模型参数的学习以及贝叶斯模型结构的学习,在前面的博文PGM练习七:CRF中参数的学习 中我们已经知道怎样学习马尔科夫模型(CRF)的参数,那个实验采用的是优化方法, ...

随机推荐

  1. How to Install JAVA 8 (JDK/JRE 8u111) on Debian 8 & 7 via PPA

    Oracle JAVA 8 Stable release has been released on Mar,18 2014 and available to download and install. ...

  2. HTML5-链接

    链接:外部,图片,内部 <!DOCTYPE html> <html> <head lang="en"> <meta charset=&qu ...

  3. (转)对SQLSERVER数据库事务日志的疑问

    本文转载自桦仔的博客http://www.cnblogs.com/lyhabc/archive/2013/06/10/3130856.html 对SQLSERVER数据库事务日志的疑问 摸不透SQLS ...

  4. 设计模式之美:Null Object(空对象)

    索引 意图 结构 参与者 适用性 效果 相关模式 实现 实现方式(一):Null Object 的示例实现. 意图 通过对缺失对象的封装,以提供默认无任何行为的对象替代品. Encapsulate t ...

  5. Aoite 系列(04) - 强劲的 CommandModel 开发模式(上篇)

    Aoite 是一个适于任何 .Net Framework 4.0+ 项目的快速开发整体解决方案.Aoite.CommandModel 是一种开发模式,我把它成为"命令模型",这是一 ...

  6. Visual Studio 2012 Visual C++ 入门

    改进的C++11标准的支持 标准模板库 为STL添加了新的库文件:<atomic>.<chrono>.<condition_variable>.<filesy ...

  7. Nunit工具做C#的单元测试

      Nunit工具做C#的单元测试 学习心得 编写人:罗旭成 时间:2013年9月2日星期一 1.开发人员如何做单元测试 单元测试是针对最小的可测试软件元素(单元)的,它所测试的内容包括单元的内部结构 ...

  8. Hello Mybatis 01 第一个CRUD

    What's the Mybatis? MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google c ...

  9. Senparc.Weixin.MP SDK 微信公众平台开发教程(九):自定义菜单接口说明

    上一篇<Senparc.Weixin.MP SDK 微信公众平台开发教程(八):通用接口说明>介绍了如何通过通用接口获取AccessToken,有了AccessToken,我们就可以来操作 ...

  10. sigar

    从http://sourceforge.net/projects/sigar/files/sigar/1.6/hyperic-sigar-1.6.4.zip/download下载sigar, 参照了h ...