elasticsearch 查询(match和term)

es中的查询请求有两种方式,一种是简易版的查询,另外一种是使用JSON完整的请求体,叫做结构化查询(DSL)。

由于DSL查询更为直观也更为简易,所以大都使用这种方式。

DSL查询是POST过去一个json,由于post的请求是json格式的,所以存在很多灵活性,也有很多形式。

这里有一个地方注意的是官方文档里面给的例子的json结构只是一部分,并不是可以直接黏贴复制进去使用的。一般要在外面加个query为key的机构。

match

最简单的一个match例子:

查询和"我的宝马多少马力"这个查询语句匹配的文档。

{
"query": {
"match": {
"content" : {
"query" : "我的宝马多少马力"
}
}
}
}

上面的查询匹配就会进行分词,比如"宝马多少马力"会被分词为"宝马 多少 马力", 所有有关"宝马 多少 马力", 那么所有包含这三个词中的一个或多个的文档就会被搜索出来。

并且根据lucene的评分机制(TF/IDF)来进行评分。

match_phrase

比如上面一个例子,一个文档"我的保时捷马力不错"也会被搜索出来,那么想要精确匹配所有同时包含"宝马 多少 马力"的文档怎么做?就要使用 match_phrase 了

{
"query": {
"match_phrase": {
"content" : {
"query" : "我的宝马多少马力"
}
}
}
}

完全匹配可能比较严,我们会希望有个可调节因子,少匹配一个也满足,那就需要使用到slop。

{
"query": {
"match_phrase": {
"content" : {
"query" : "我的宝马多少马力",
"slop" : 1
}
}
}
}

multi_match

如果我们希望两个字段进行匹配,其中一个字段有这个文档就满足的话,使用multi_match

{
"query": {
"multi_match": {
"query" : "我的宝马多少马力",
"fields" : ["title", "content"]
}
}
}

但是multi_match就涉及到匹配评分的问题了。

我们希望完全匹配的文档占的评分比较高,则需要使用best_fields

{
"query": {
"multi_match": {
"query": "我的宝马发动机多少",
"type": "best_fields",
"fields": [
"tag",
"content"
],
"tie_breaker": 0.3
}
}
}

意思就是完全匹配"宝马 发动机"的文档评分会比较靠前,如果只匹配宝马的文档评分乘以0.3的系数

我们希望越多字段匹配的文档评分越高,就要使用most_fields

{
"query": {
"multi_match": {
"query": "我的宝马发动机多少",
"type": "most_fields",
"fields": [
"tag",
"content"
]
}
}
}

我们会希望这个词条的分词词汇是分配到不同字段中的,那么就使用cross_fields

{
"query": {
"multi_match": {
"query": "我的宝马发动机多少",
"type": "cross_fields",
"fields": [
"tag",
"content"
]
}
}
}

term

term是代表完全匹配,即不进行分词器分析,文档中必须包含整个搜索的词汇

{
"query": {
"term": {
"content": "汽车保养"
}
}
}

查出的所有文档都包含"汽车保养"这个词组的词汇。

使用term要确定的是这个字段是否“被分析”(analyzed),默认的字符串是被分析的。

拿官网上的例子举例:

mapping是这样的:

PUT my_index
{
"mappings": {
"my_type": {
"properties": {
"full_text": {
"type": "string"
},
"exact_value": {
"type": "string",
"index": "not_analyzed"
}
}
}
}
} PUT my_index/my_type/1
{
"full_text": "Quick Foxes!",
"exact_value": "Quick Foxes!"
}

其中的full_text是被分析过的,所以full_text的索引中存的就是[quick, foxes],而extra_value中存的是[Quick Foxes!]。

那下面的几个请求:

GET my_index/my_type/_search
{
"query": {
"term": {
"exact_value": "Quick Foxes!"
}
}
}

请求的出数据,因为完全匹配

GET my_index/my_type/_search
{
"query": {
"term": {
"full_text": "Quick Foxes!"
}
}
}

请求不出数据的,因为full_text分词后的结果中没有[Quick Foxes!]这个分词。

bool联合查询: must,should,must_not

如果我们想要请求"content中带宝马,但是tag中不带宝马"这样类似的需求,就需要用到bool联合查询。

联合查询就会使用到must,should,must_not三种关键词。

这三个可以这么理解

  • must: 文档必须完全匹配条件
  • should: should下面会带一个以上的条件,至少满足一个条件,这个文档就符合should
  • must_not: 文档必须不匹配条件

比如上面那个需求:

{
"query": {
"bool": {
"must": {
"term": {
"content": "宝马"
}
},
"must_not": {
"term": {
"tags": "宝马"
}
}
}
}
}

elasticsearch 查询(match和term)的更多相关文章

  1. Elasticsearch学习系列之term和match查询

    lasticsearch查询模式 一种是像传递URL参数一样去传递查询语句,被称为简单查询 GET /library/books/_search //查询index为library,type为book ...

  2. Elasticsearch学习系列之term和match查询实例

    Elasticsearch查询模式 一种是像传递URL参数一样去传递查询语句,被称为简单查询 GET /library/books/_search //查询index为library,type为boo ...

  3. Elasticsearch 5.0 中term 查询和match 查询的认识

    Elasticsearch 5.0 关于term query和match query的认识 一.基本情况 前言:term query和match query牵扯的东西比较多,例如分词器.mapping ...

  4. (转载)elasticsearch 查询(match和term)

    原文地址:https://www.cnblogs.com/yjf512/p/4897294.html elasticsearch 查询(match和term) es中的查询请求有两种方式,一种是简易版 ...

  5. (转)Elasticsearch查询规则------match和term

    es种有两种查询模式,一种是像传递URL参数一样去传递查询语句,被称为简单搜索或查询字符串(query string)搜索,比如 GET /megacorp/employee/_search //查询 ...

  6. Elasticsearch查询规则(一)match和term

    es种有两种查询模式,一种是像传递URL参数一样去传递查询语句,被称为简单搜索或查询字符串(query string)搜索,比如 GET /megacorp/employee/_search //查询 ...

  7. ElasticSearch - match vs term

    match vs term 这个问题来自stackoverflow https://stackoverflow.com/questions/23150670/elasticsearch-match-v ...

  8. ES 入门记录之 match和term查询的区别

    ElasticSearch 系列文章 1 ES 入门之一 安装ElasticSearcha 2 ES 记录之如何创建一个索引映射 3 ElasticSearch 学习记录之Text keyword 两 ...

  9. ElasticSearch查询 第四篇:匹配查询(Match)

    <ElasticSearch查询>目录导航: ElasticSearch查询 第一篇:搜索API ElasticSearch查询 第二篇:文档更新 ElasticSearch查询 第三篇: ...

随机推荐

  1. [转] 编译安装GCC

    Linux下编写C/C++程序自然缺不了一个优秀的编译器,Linux下比较常见的自然是GCC了. 2015年GCC也出到了5.2.0版本,对于C++11/14也有了更好的支持了. 所以,今天我们就来说 ...

  2. 深入理解MVVM模式中Silverlight的Trigger、Action和Behavior及Silverlight的继承机制

    接触Silverlight已经有两三个月了,开始一直感觉他和Winform很相似,拖拖控件就行了,所以一直把经历放在了研究后台和服务器交互和性能优化上面,很少去仔细研究Silverlight的页面.前 ...

  3. SignalR + KnockoutJS + ASP.NET MVC4 实现井字游戏

    1.1.1 摘要 今天,我们将使用SignalR + KnockoutJS + ASP.NET MVC实现一个实时HTML5的井字棋游戏. 首先,网络游戏平台一定要让用户登陆进来,所以需要一个登陆模块 ...

  4. 在ubuntu上安装nodejs[开启实时web时代]

    作为一名菜鸟,竟然在centos桌面上连输入命令行的地方都找不到,是在是对不起开山祖师,最后苍天不负苦心人,在ubuntu上找见了 [安装过程参考了http://cnodejs.org/topic/4 ...

  5. 了不起的Node.js: 将JavaScript进行到底(Web开发首选,实时,跨多服务器,高并发)

    了不起的Node.js: 将JavaScript进行到底(Web开发首选,实时,跨多服务器,高并发) Guillermo Rauch 编   赵静 译 ISBN 978-7-121-21769-2 2 ...

  6. fir.im Weekly - 给女朋友的 iOS 开发教程

    俗话说:技多不压身,功到自然成.本期 fir.im Weekly 收集的热度资源,大部分关于Android.iOS 开发工具和源码,还有一些有关设计的 Tips ,希望对你有帮助. 给女朋友的 iOS ...

  7. iOS-性能优化4

    UITableView性能优化技巧 Table view需要有很好的滚动性能,不然用户会在滚动过程中发现动画的瑕疵. 为了保证table view平滑滚动,确保你采取了以下的措施: 正确使用`reus ...

  8. Android ListView 常用技巧

    Android ListView 常用技巧 Android TextView 常用技巧 1.使用ViewHolder提高效率 ViewHolder模式充分利用了ListView的视图缓存机制,避免了每 ...

  9. django创建项目

    django创建项目 安装django pip install django==1.9 Note: C:\Python34\Scripts\pip.exe 创建项目 django-admin star ...

  10. MySQL5.7.13源码编译安装指南

    系统 CenterOs 6.5 1.安装依赖包(cmake make gcc等,其实好多都有了,不需要更新,为了防止世界被破坏,就装下) yum install gcc gcc-c++ -yyum i ...