本章是普里姆算法的C++实现。

目录
1. 普里姆算法介绍
2. 普里姆算法图解
3. 普里姆算法的代码说明
4. 普里姆算法的源码

转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列 目录

普里姆算法介绍

普里姆(Prim)算法,是用来求加权连通图的最小生成树的算法。

基本思想
对于图G而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。
从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边。

普里姆算法图解

以上图G4为例,来对普里姆进行演示(从第一个顶点A开始通过普里姆算法生成最小生成树)。

初始状态:V是所有顶点的集合,即V={A,B,C,D,E,F,G};U和T都是空!
第1步:将顶点A加入到U中。
    此时,U={A}。
第2步:将顶点B加入到U中。
    上一步操作之后,U={A}, V-U={B,C,D,E,F,G};因此,边(A,B)的权值最小。将顶点B添加到U中;此时,U={A,B}。
第3步:将顶点F加入到U中。
    上一步操作之后,U={A,B}, V-U={C,D,E,F,G};因此,边(B,F)的权值最小。将顶点F添加到U中;此时,U={A,B,F}。
第4步:将顶点E加入到U中。
    上一步操作之后,U={A,B,F}, V-U={C,D,E,G};因此,边(F,E)的权值最小。将顶点E添加到U中;此时,U={A,B,F,E}。
第5步:将顶点D加入到U中。
    上一步操作之后,U={A,B,F,E}, V-U={C,D,G};因此,边(E,D)的权值最小。将顶点D添加到U中;此时,U={A,B,F,E,D}。
第6步:将顶点C加入到U中。
    上一步操作之后,U={A,B,F,E,D}, V-U={C,G};因此,边(D,C)的权值最小。将顶点C添加到U中;此时,U={A,B,F,E,D,C}。
第7步:将顶点G加入到U中。
    上一步操作之后,U={A,B,F,E,D,C}, V-U={G};因此,边(F,G)的权值最小。将顶点G添加到U中;此时,U=V。

此时,最小生成树构造完成!它包括的顶点依次是:A B F E D C G

普里姆算法的代码说明

以"邻接矩阵"为例对普里姆算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。

1. 基本定义

class MatrixUDG {
#define MAX 100
#define INF (~(0x1<<31)) // 无穷大(即0X7FFFFFFF)
private:
char mVexs[MAX]; // 顶点集合
int mVexNum; // 顶点数
int mEdgNum; // 边数
int mMatrix[MAX][MAX]; // 邻接矩阵 public:
// 创建图(自己输入数据)
MatrixUDG();
// 创建图(用已提供的矩阵)
//MatrixUDG(char vexs[], int vlen, char edges[][2], int elen);
MatrixUDG(char vexs[], int vlen, int matrix[][9]);
~MatrixUDG(); // 深度优先搜索遍历图
void DFS();
// 广度优先搜索(类似于树的层次遍历)
void BFS();
// prim最小生成树(从start开始生成最小生成树)
void prim(int start);
// 打印矩阵队列图
void print(); private:
// 读取一个输入字符
char readChar();
// 返回ch在mMatrix矩阵中的位置
int getPosition(char ch);
// 返回顶点v的第一个邻接顶点的索引,失败则返回-1
int firstVertex(int v);
// 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
int nextVertex(int v, int w);
// 深度优先搜索遍历图的递归实现
void DFS(int i, int *visited); };

MatrixUDG是邻接矩阵对应的结构体。
mVexs用于保存顶点,mVexNum是顶点数,mEdgNum是边数;mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。

2. 普里姆算法

/*
* prim最小生成树
*
* 参数说明:
* start -- 从图中的第start个元素开始,生成最小树
*/
void MatrixUDG::prim(int start)
{
int min,i,j,k,m,n,sum;
int index=0; // prim最小树的索引,即prims数组的索引
char prims[MAX]; // prim最小树的结果数组
int weights[MAX]; // 顶点间边的权值 // prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。
prims[index++] = mVexs[start]; // 初始化"顶点的权值数组",
// 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
for (i = 0; i < mVexNum; i++ )
weights[i] = mMatrix[start][i];
// 将第start个顶点的权值初始化为0。
// 可以理解为"第start个顶点到它自身的距离为0"。
weights[start] = 0; for (i = 0; i < mVexNum; i++)
{
// 由于从start开始的,因此不需要再对第start个顶点进行处理。
if(start == i)
continue; j = 0;
k = 0;
min = INF;
// 在未被加入到最小生成树的顶点中,找出权值最小的顶点。
while (j < mVexNum)
{
// 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。
if (weights[j] != 0 && weights[j] < min)
{
min = weights[j];
k = j;
}
j++;
} // 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。
// 将第k个顶点加入到最小生成树的结果数组中
prims[index++] = mVexs[k];
// 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。
weights[k] = 0;
// 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。
for (j = 0 ; j < mVexNum; j++)
{
// 当第j个节点没有被处理,并且需要更新时才被更新。
if (weights[j] != 0 && mMatrix[k][j] < weights[j])
weights[j] = mMatrix[k][j];
}
} // 计算最小生成树的权值
sum = 0;
for (i = 1; i < index; i++)
{
min = INF;
// 获取prims[i]在mMatrix中的位置
n = getPosition(prims[i]);
// 在vexs[0...i]中,找出到j的权值最小的顶点。
for (j = 0; j < i; j++)
{
m = getPosition(prims[j]);
if (mMatrix[m][n]<min)
min = mMatrix[m][n];
}
sum += min;
}
// 打印最小生成树
cout << "PRIM(" << mVexs[start] << ")=" << sum << ": ";
for (i = 0; i < index; i++)
cout << prims[i] << " ";
cout << endl;
}

普里姆算法的源码

这里分别给出"邻接矩阵图"和"邻接表图"的普里姆算法源码。

1. 邻接矩阵源码(MatrixUDG.cpp)

2. 邻接表源码(ListUDG.cpp)

Prim算法(二)之 C++详解的更多相关文章

  1. Prim算法(三)之 Java详解

    前面分别通过C和C++实现了普里姆,本文介绍普里姆的Java实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里姆算法的代码说明 4. 普里姆算法的源码 转载请注明出处:http:// ...

  2. Floyd算法(二)之 C++详解

    本章是弗洛伊德算法的C++实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明出处:http://www.cnblogs.c ...

  3. Dijkstra算法(二)之 C++详解

    本章是迪杰斯特拉算法的C++实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法图解 3. 迪杰斯特拉算法的代码说明 4. 迪杰斯特拉算法的源码 转载请注明出处:http://www.cnbl ...

  4. Kruskal算法(二)之 C++详解

    本章是克鲁斯卡尔算法的C++实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的代码说明 6. 克鲁斯卡尔算法的源码 转 ...

  5. 转:JAVAWEB开发之权限管理(二)——shiro入门详解以及使用方法、shiro认证与shiro授权

    原文地址:JAVAWEB开发之权限管理(二)——shiro入门详解以及使用方法.shiro认证与shiro授权 以下是部分内容,具体见原文. shiro介绍 什么是shiro shiro是Apache ...

  6. 二叉搜索树详解(Java实现)

    1.二叉搜索树定义 二叉搜索树,是指一棵空树或者具有下列性质的二叉树: 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值: 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根 ...

  7. 数据结构图文解析之:二叉堆详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  8. Java进阶(三十二) HttpClient使用详解

    Java进阶(三十二) HttpClient使用详解 Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们 ...

  9. Spring Boot 启动(二) 配置详解

    Spring Boot 启动(二) 配置详解 Spring 系列目录(https://www.cnblogs.com/binarylei/p/10198698.html) Spring Boot 配置 ...

随机推荐

  1. 【Java】深深跪了,OJ题目Java与C运行效率对比(附带清华北大OJ内存计算的对比)

    看了园友的评论之后,我也好奇清橙OJ是怎么计算内存占用的.重新测试的情况附在原文后边. -------------------------------------- 这是切割线 ----------- ...

  2. rdc21n(研发与设计综合讨论)博客开通了!

    rdc21n是“Research and Design Comprehensive discussioN”,其中21表示Comprehensive discussioN中间的21个字母(不包含空格), ...

  3. 决策树 -- C4.5算法

    C4.5是另一个分类决策树算法,是基于ID3算法的改进,改进点如下: 1.分离信息   解释:数据集通过条件属性A的分离信息,其实和ID3中的熵:   2.信息增益率   解释:Gain(A)为获的A ...

  4. 如何为Eclipse安装主题(Color Theme)

    Eclipse开发环境默认都是白底黑字的,看到同事的Xcode中设置的黑灰色背景挺好看的,就去网上查了一下.发现Eclipse也可以设置主题. 方法1:你可以从Eclipse Marketplace中 ...

  5. (原创)巩固理解基于DS18B20的1-wire协议(MCU,经验)

    1.Abstract     如前篇随笔所写,将以前遇到最难懂的两个部分重拾一下.前一篇写的是I2C协议(http://www.cnblogs.com/hechengfei/p/4117840.htm ...

  6. [转]Git - 重写历史

    转自http://git-scm.com/book/zh/Git-%E5%B7%A5%E5%85%B7-%E9%87%8D%E5%86%99%E5%8E%86%E5%8F%B2    重写历史 很多时 ...

  7. hibernate常用API详解

    根据个人使用Hibernate的经验,介绍一下Hibernate的多种不同的查询和CUD操作,这些东西在日常开发中非常常用,希望对大家有所帮助. 以下示例均以两张表为例:member和userinfo ...

  8. iOS Wi-Fi

    查漏补缺集是自己曾经做过相关的功能,但是重做相关功能或者重新看到相关功能的实现,感觉理解上更深刻.这一类的文章集中记录在查漏补缺集. iOS 开发中难免会遇到很多与网络方面的判断,这里做个汇总,大多可 ...

  9. Java Spring AOP用法

    Java Spring AOP用法 Spring AOP Java web 环境搭建 Java web 项目搭建 Java Spring IOC用法 spring提供了两个核心功能,一个是IoC(控制 ...

  10. Linux 网络编程(IO模型)

    针对linux 操作系统的5类IO模型,阻塞式.非阻塞式.多路复用.信号驱动和异步IO进行整理,参考<linux网络编程>及相关网络资料. 阻塞模式 在socket编程(如下图)中调用如下 ...