2.梅花桩

  (blossom.pas/c/cpp)

【问题描述】

小x在练习一门轻功,这门轻功是在梅花桩上跳来跳去,这门轻功是严格按照直线从一个梅花桩直接跳到另外一个梅花桩上。因为小x有恐高症,所以除了开始和结束的两个梅花桩,这条直线上不能有其他梅花桩,否则小x会真气中断,直接掉下来。

小x的梅花桩有W+1行,H+1列,每个梅花桩之间距离都是1米,严格按照上下左右排列,小x的轻功最少能跳L1米,最多能跳L2米。

作为一位爱思考的数学青年,小x想到了一个问题:有多少对梅花桩对小x来说是安全的,或者说有多少对梅花桩能保证小x练习这门轻功。

例如如下的地图:

W = 2  H = 1

**

**

**

而小x跳跃的长度为2和3之间。

这个梅花桩共有 (2+1) * (1+1) = 6个点以及有15 种配对方法

(0,0)-(0,1)   (0,0)-(2,1)   (0,1)-(2,1)   (1,1)-(2,0)

(0,0)-(1,0)   (0,1)-(1,0)   (1,0)-(1,1)   (1,1)-(2,1)

(0,0)-(1,1)   (0,1)-(1,1)   (1,0)-(2,0)   (2,0)-(2,1)

(0,0)-(2,0)   (0,1)-(2,0)   (1,0)-(2,1)

在这之中,只有四种是可以满足小x跳跃长度的

始位  末位 长度          始位  末位 长度

(0,0)-(2,0) 2.00             (0,1)-(2,0) 2.24

(0,0)-(2,1) 2.24             (0,1)-(2,1) 2.00

但在这四种之中,(0,0)-(2,0)和(0,1)-(2,1)都不符合直线上没有其他梅花桩的要求,所以这个样例中只有2种结果。

【输入】

一行,4个整数W, H, L1, 和 L2

【输出】

一行。可能的方案数。

【输入输出样例】

blossom.in

blossom.out

2 1 2 3

2

【数据范围】

50%数据 0<w,h,L1,L2<=100

100% 数据  1 <= L1 <= L2 <= 1,500  1 <= W <= 1,000; 1 <= H <= 1,000

思路:

50%的分很好拿(四重循环)。

但是如何拿满分?(这个问题好)HOW

首先,如果L1<=1时,所有相邻为一的点都满足要求。

if(l1<=)
ans=ans+w*(h+)+h*(w+);

显然,当w=3,h=3时有(w+1)*h+h*(w+1);

然后,就枚举(x,y)到(0,0)的距离。如果小于L2,大于L1则算出有多少那样的矩形*2.

ans+=(w+1-x)*(h+1-y)

cpp:

 #include<iostream>
#include<string>
#include<ctime>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<iomanip>
using namespace std;
const int maxn=;
int w,h,l1,l2;
long long ans=;
int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
} int main()
{
freopen("blossom.in","r",stdin);
freopen("blossom.out","w",stdout);
ios::sync_with_stdio(false);
cin>>w>>h>>l1>>l2;
if(l1<=)
ans=ans+w*(h+)+h*(w+);
for(int i=;i<=w;i++)
{
for(int j=;j<=h;j++)
{
int x=i*i+j*j;
if(x>=l1*l1&&x<=l2*l2)
{
x=gcd(i,j);
if(x==)
{
ans=ans+(w-i+)*(h-j+)*;
}
}
}
}
cout<<ans<<endl;
return ;
}

11.12模拟考T2(GCD)的更多相关文章

  1. 11.12模拟考T1(可持续优化)PS:神奇的东西

    1.数列操作   (array.pas/c/cpp) [问题描述] 现在有一个数列,最初包含0个数.现在要对数列操作n次,操作有3类. 1) a k,在数列的最后插入一个整数k 2) s 将最近插入的 ...

  2. 2014.11.12模拟赛【最小公倍数】| vijos1047最小公倍数

    最小公倍数(lcm.c/.cpp/.pas) 题目描述 给定两个正整数,求他们的最小公倍数. 样例输入 28 12 样例输出 84 数据范围 对于40%数据:1<=a,b<=10^9 对于 ...

  3. 2014.11.12模拟赛【美妙的数字】| vijos1904学姐的幸运数字

    美妙的数字(number.c/.cpp/.pas) 题目描述 黄巨大认为非负整数是美妙的,并且它的数值越小就越美妙.当然0是最美妙的啦. 现在他得到一串非负整数,对于每个数都可以选择先对它做二进制非运 ...

  4. NOIp 11.11/12

    最后一场比较正式的NOIp模拟赛,写一发小总结.题目没什么好说的,大部分很简单,先贴一下代码. 1111 T1 //string //by Cydiater //2016.11.11 #include ...

  5. 【2018.06.26NOIP模拟】T2号码bachelor 【数位DP】*

    [2018.06.26NOIP模拟]T2号码bachelor 题目描述 Mike 正在在忙碌地发着各种各样的的短信.旁边的同学 Tom 注意到,Mike 发出短信的接收方手机号码似乎都满足着特别的性质 ...

  6. [第一波模拟\day1\T2]{分班}(divide.cpp)

    [题目描述] 小N,小A,小T又大了一岁了. 现在,他们已经是高二年级的学生了.众所周知,高二的小朋友是要进行文理科分班考试的,这样子的话,三个好朋友说不定就会不分在一个班. 于是三个人决定,都考平均 ...

  7. 18/9/22NOIP模拟考

    18/9/22NOIP模拟考 其实本来是有多组数据的,出题人忘记在题面上加了   斜眼笑 期望得分:100:实际得分:100 由于种种原因,拿到题的时候已经过去了0.5h+... 然后因为这道题数据范 ...

  8. 9.11 myl模拟赛

    9.11 myl 模拟赛 100 + 100 + 0 第一题耗费了太多的时间,导致最后一题没有时间想,直接去写了暴力,而且出题人没有给暴力分.... Problem 1. superman [题目描述 ...

  9. JZOJ2020年8月11日提高组T2 宝石

    JZOJ2020年8月11日提高组T2 宝石 题目 Description 见上帝动了恻隐之心,天后也想显示一下慈悲之怀,随即从口袋中取出一块魔术方巾,让身边的美神维纳斯拿到后堂的屏风上去试试,屏风是 ...

随机推荐

  1. AliOS编译安装MyRocks

    MyRocks是facabook版将自主研发的MySQL分支,其源码位于为:https://github.com/facebook/mysql-5.6/ 首先需要安装以下: sudo yum inst ...

  2. hihoCoder#1135

    刚开始学习C语言,准备在做hiho的题目的过程中来学习,在此进行记录,如果代码中有错误或者不当的地方还请指正. 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 The c ...

  3. SQLserver日期函数

      ------------------日期转化成年月日时分秒毫秒--------------- select 'R'+CONVERT(varchar(100), GETDATE(), 112)+ri ...

  4. css3弹性盒子温习

    弹性盒子由弹性容器(Flex container)和弹性子元素(Flex item)组成. 弹性容器通过设置 display 属性的值为 flex 或 inline-flex将其定义为弹性容器. 弹性 ...

  5. 调试 zeromq 发现 accept 死循环

    起因:在群里一个同学说使用 zeromq 的时候出了点儿问题,问题描述如下“router连接十几万客户端后,然后把router杀死,重启,这时候zeromq的某个线程99%的cpu,卡死了,再也接受不 ...

  6. DOM扩展之HTML5 插入标记

    11.3.6 插入标记 当需要在文档中插入大量的HTML标记时,通过DOM操作就会是非常麻烦的,相对而言,使用插入标记的技术,直接插入HTML字符串不仅简单而且更快.以下插入标记相关的DOM操作已经纳 ...

  7. C语言程序设计第九次作业

    一.学习内容      本次课我们重点学习了怎样向函数传递数组,鉴于大家对函数和数组的理解和运用还存在一些问题,下面通过一些实例加以说明,希望同学们能够认真阅读和理解.      例1:火柴棍拼数字 ...

  8. Linux下swoole的安装配置

    前几天搭建swoole环境,在安装php的swoole扩展时不知道什么原因,提示成功,但是使用的时候不能加载,最后决定重新安装php试试,顺便记录了php的安装过程 wget http://cn2.p ...

  9. Excel的python读写

    实际工作中可能需要整理一些文档,或者记录一些数据,这时候使用python来操作Excel可能会帮得上你. 读操作: # encoding : utf-8 #设置编码方式 import xlrd #导入 ...

  10. docker 源码分析 五(基于1.8.2版本),Docker容器的创建

    前面讲到了docker容器得镜像,镜像其实是docker容器的静态部分,而docker容器则是docker镜像的动态部分,即启动了一个进程来运行,本篇最要来分析一下怎样创建并运行一个容器. 创建一个容 ...