Goertzel算法

Goertzel算法由Gerald Goertzel在1958年提出,用于数字信号处理,是属于离散傅里叶变换的范畴,目的是从给定的采样中求出某一特定频率信号的能量,用于有效性的评价。

这个算法有几个关键的参数:

  • 采样率R,指的是需要分析的数据每秒钟有多少个采样
  • 目标频率f,指的是需要检测并评价的这个频率的值
  • 检测区段采样值数量N,也就是每N个采样这个算法会对频率f给出评价
  • 检测区段包含目标频率的完整周期个数K

很显然,上述参数应该有这样的关系:

这个K值应该是一个整数,而且要大小合适。如果太大,不利于检测的时效,如果太小,则检测可能不准确。例如十几甚至二十几左右应该相对合理。例如R为8000,需要检测800hz的频率,N取值100,那么K为10,很不错。但是,需要检测的频率有时候并不那么整,例如697,那么N应该取值多少呢?N在1000以内,无法得到一个整数K,我们只能退而求其次,找一个四舍五入误差最小的。例如N取115,K的计算结果为10.019375,四舍五入为10,而且有较小的误差。

有了上述的参数,然后我们来计算每个采样在一个目标频率一个周期中所占的弧度ω。既然N个采样表达了K个周期(2π),那么ω应该这样计算:

这里需要注意的是,因为K值可能经过了四舍五入,所以上述两个公式必须先后计算,一定不能合在一起化简把K约掉!

然后,我们可以得到后期计算会频繁遇到的系数C:

以上参数,我们都可以事先计算好,不必在每个采样分析中再次计算。之后,就开始针对N个采样进行分析计算

首先初始化:

然后按照顺序针对N个采样每一个值S(我认为这个S一般是一个16位的整数,取值范围在-32768到32767之间,如果你得到的是已经进行过编码的媒体流,例如G.711编码,那么需要首先解码。当然也许采样值就是-128到127之间的单字节整数,那么这样对计算结果中的P值会影响巨大,DTMF识别的时候一些判断参数可能要调整),做如下计算:

上述计算完成之后,我们就可以得到在这N个采样中所体现的频率f的能量值P:

DTMF识别

以上是goertzel算法的全部思想。如果我们要将其用于DTMF识别,还需要做一些工作。DTMF识别,我们需要根据给定的一段时间的采样,能够最大限度地排除噪音的干扰,将有效的DTMF信号识别出来

我们知道DTMF有8个频率:697, 770, 852, 941, 1209, 1336, 1477, 1633,通过前4个频率和后4个频率的两两组合,确定16个符号。那么我们在对给定一段时间的采样进行处理的时候,就需要先将其分为每段为N个采样的多个采样区段,然后对每一区段针对8个频率分别运用goertzel算法进行计算得到每个频率的能量P

为了完成这些能量的计算,我们需要在开始针对8个不同的频率分别计算系数C,而参数N的选择非常关键,因为8个频率的K值都不同,我们要尽可能使得8个频率的K值四舍五入之后都误差尽可能小,经过检验,在采样率为8000的时候,N=205应该是一个最佳值,你可以做一个测试:

N=

function computeK()
{
var n = parseInt(document.getElementById("N").value);
var htmlStr = "

";
htmlStr += "

"
var f = [697, 770, 852, 941, 1209, 1336, 1477, 1633];
for(var i = 0; i ";
htmlStr += "

";
var K = n * f[i] / 8000.0;
htmlStr += "

";
htmlStr += "

";
htmlStr += "

";
htmlStr += "

";
}
htmlStr += "

f K实际值 K近似值 误差
" + f[i] + " " + K + " " + Math.round(K) + " " + Math.abs((Math.round(K) - K)) + "

";
document.getElementById("kTable").innerHTML = htmlStr;
}
computeK()

针对N个采样值,对8个频率分别计算出了能量P之后,我们就可以开始评估这些能量值是否足以表明这N个采样中含有某个DTMF符号

DTMF符号和频率的对应关系如下:

f 1209 1336 1477 1633
679 1 2 3 A
770 4 5 6 B
852 7 8 9 C
941 * 0 # D

我们从1209, 1336, 1477和1633四个频率对应的能量P中取最大值,记作Px,从679,770,852和941四个频率对应的能量P中取出最大值Py。那么Px和Py对应的频率组合极有可能代表识别出一个DTMF符号。但是,我们还需要做一系列的判断,来进一步评估:

  1. Px和Py是否足够强大?我们可以设定一个门限,如果么Px和Py这两个任何一个低于这个门限,那么N个采样被评估为没有识别出DTMF符号。参考资料[2]中建议这个门限值为4*105。但是如果采样值的取值范围是-32768到32767的话,实际上计算出来的P值会非常大,这个门限设为4*109都可以。
  2. Px和Py的差别是否太大?正常的DTMF信号,这两个能量应该接近,那么如果差别较大,我们视为无效。参考资料[2]中建议的方法为:如果Py < Px * 0.398,那么认为无效。如果Px < Py * 0.158也认为无效。但是实际上,我们将0.158改为0.5,识别效果更佳。
  3. 其它频率的能量P有没有很多接近Px和Py的?参考资料[2]中建议的方法为:首先取近Px和Py中较大的那个,设为Pm,如果其他频率的P值有2个以上达到了Pm的15.8%,那么认为是噪音导致,视为无效。

如果上述三个检验关卡都通过了,那么我们可以将这N个采样评估为包含一个DTMF符号,即Px和Py对应的频率组合对应的某个符号。

参考资料:

[1] https://en.wikipedia.org/wiki/Goertzel_algorithm

[2] https://en.wikipedia.org/w/index.php?title=Goertzel_algorithm&oldid=17802166

使用Goertzel算法识别DTMF信号的更多相关文章

  1. 运用kNN算法识别潜在续费商家

    背景与目标 Youzan 是一家SAAS公司,服务于数百万商家,帮助互联网时代的生意人私有化顾客资产.拓展互联网客群.提高经营效率.现在,该公司希望能够从商家的交易数据中,挖掘出有强烈续费倾向的商家, ...

  2. FreeSWITCH收到重复的DTMF信号

    一.背景 用户是运营商手机,拨打的是运营商的固话号码进入的FreeSWITCH的IVR,进入IVR语音播报后,按指定的分机号呼相关人员. 二.现象 用户反映拨打124870找不到指定人员,以前是正常的 ...

  3. IDAPython实战项目——DES算法识别

    在CTF的逆向中我们需要的是找到加密的主函数,结合了yara的识别原理,通过对常量数组的引用的查找,一步步递归构建调用树.调用树根部就是可能的密码算法主函数. 由于这种办法需要常量分布于算法的各个步骤 ...

  4. 机器学习--kNN算法识别手写字母

    本文主要是用kNN算法对字母图片进行特征提取,分类识别.内容如下: kNN算法及相关Python模块介绍 对字母图片进行特征提取 kNN算法实现 kNN算法分析 一.kNN算法介绍 K近邻(kNN,k ...

  5. 深入学习使用ocr算法识别图片中文字的方法

    公司有个需求,简单点说需要从一张图片中识别出中文,通过python来实现,当然其他程序也行,只要能实现,而小编主要学习python,所以就提了python.一个小白在网上遨游了一天,终于找到一丝丝思绪 ...

  6. 算法 识别有效ip地址和掩码并做统计

    题目描述 请解析IP地址和对应的掩码,进行分类识别.要求按照A/B/C/D/E类地址归类,不合法的地址和掩码单独归类. 所有的IP地址划分为 A,B,C,D,E五类 A类地址1.0.0.0~126.2 ...

  7. KNN (K近邻算法) - 识别手写数字

    KNN项目实战——手写数字识别 1. 介绍 k近邻法(k-nearest neighbor, k-NN)是1967年由Cover T和Hart P提出的一种基本分类与回归方法.它的工作原理是:存在一个 ...

  8. Amazon验证码机器算法识别

    Amazon验证码识别 在破解Amazon的验证码的时候,利用机器学习得到验证码破解精度超过70%,主要是训练样本不够,如果在足够的样本下达到90%是非常有可能的. update后,样本数为2800多 ...

  9. KNN算法识别手写数字

    需求: 利用一个手写数字“先验数据”集,使用knn算法来实现对手写数字的自动识别: 先验数据(训练数据)集: ♦数据维度比较大,样本数比较多. ♦ 数据集包括数字0-9的手写体. ♦每个数字大约有20 ...

随机推荐

  1. Eclipse连接VirtualBox中的Android x86

    Android x86 Alt+F1打开命令行,命令netcfg查看当前ip,记住,然后Alt+F7回界面. Eclipse-Window-Preferences-Android-DDMS-Use A ...

  2. 在Excel中将数字转换为大写

    123.09 = 壹佰贰拾叁元零玖分 =SUBSTITUTE(SUBSTITUTE(IF(G10<0,"負","")&TEXT(TRUNC(ABS ...

  3. JAVA的界面(Swing)

    现在的程序很多在java中运行,很多时候是Web;很多服务端还是有一个简单的日志文件比较好:或者配置: 今天在看java图形界面开发时,看见已经不怎么更新的库.没有办法,市场决定一切,很多好的东西没有 ...

  4. 慕课网-Java入门第一季-6-9

    来源:http://www.imooc.com/code/1571 所谓二维数组,可以简单的理解为是一种“特殊”的一维数组,它的每个数组空间中保存的是一个一维数组. 那么如何使用二维数组呢,步骤如下: ...

  5. AngularJS-Uncaught Error: [$injector:modulerr]

    我在实验AngularJS-系统代码的配置和翻译的时候遇到了如下图所示的错误: 在JS编程的时候会经常遇到,XXX不是一个函数,XXX未定义等等错误,只要看到和自己编写的代码语句相关的东西直接找到就能 ...

  6. jQuery.ajax()调用asp.net后台方法

    利用JQuery的$.ajax()可以很方便的调用asp.net的后台方法.介意方法名不要重名 建一个WebFormAjax名aspx文件 CS <%@ Page Language=" ...

  7. javascript-with()方法

    1)简要说明         with 语句可以方便地用来引用某个特定对象中已有的属性,但是不能用来给对象添加属性.要给对象创建新的属性,必须明确地引用该对象. 2)语法格式  with(object ...

  8. MongoDB(七)MongoDb数据结构

    首先,向数据库插入一条bjson数据 首先是定义文档,然后使用admin用户名密码登录,进入test数据库,向test数据库中插入此文档("表名称和表中的记录") 插入结果,查看m ...

  9. How to acquire an Android phone with locked bootloader?

    As we know that some devices come with locked bootloaders like Sony, HUAWEI, hTC...If you try to unl ...

  10. PHP5.3、PHP5.4下安装ZendOptimizer或Zend Guard Loader的方法

    现在很多PHP程序都需要ZendOptimizer环境,但是ZendOptimizer在PHP5.2之后已经被支持,那怎么办,Zend也不会这么做,原来PHP5.3开始ZendOptimizer正式改 ...