bitset(01串)优化
bitset的经典使用:
见代码及注释:
#include<bitset>
#include<algorithm>
using namespace std;
//只需调用<bitset>库,以及声明namespace std #include<iostream>
#include<cstdio>
//作输出用 int main(){
bool flag;
int num,pos;
string mak_bit; //测试起: //声明部分: bitset<>b0[];
//可以声明数组 bitset<> b1;
//声明一个9(常数)个二进制位的bitset变量,为全0 num=;
bitset<> b2(num);
//声明一个9(常数)个二进制位的bitset变量,为num的二进制,多余顶部截断 mak_bit="";
bitset<>b3(mak_bit);
//声明一个9(常数)个二进制位的bitset变量,为mak_bit,不足前补零,多余自尾部截断,此处不能用char数组,且mak_bit只能是01 num=;
bitset<>b4(mak_bit,num);
//截取mak_bit第num位之后的字符串,按声明b3的方式声明 num=;pos=;
bitset<>b5(mak_bit,num,pos);
//截取mak_bit3第num为之后的pos位字符,按声明b3的方式声明 //应用部分: cin>>b1;cout<<b1<<" ";
//读入:读入一个字符串,从第一个非01的地方截断不足前补零,若读入长度为0,则不覆盖之前结果,否则覆盖,多余自尾部截断,输出:一个01串 b1=b2;b1=num;b1=;b1=5l;b1=5ll;
//(bitset)与(bitset(预定位数相等)) (int) (long long) (long)间重载了= b1<<=;b2=b1>>;b1|=b2;b1&=b2;b1^=b2;cout<<b1<<" "<<b2<<" ";
//bitset重载了位运算符,然而bitset并未重载其他运算符及布尔符(不能替代高精度) num=b2.count();printf("\n%d\n",num);
//统计有几位为1; flag=b1.none();printf("%s\n",flag?"YES":"NO");
//若b1为全0,返回true,否则返回false flag=b2.any();printf("%s\n",flag?"YES":"NO");
//若b1有位为1,返回true,否则返回false pos=;
num=b2[pos];printf("%d\n",num);
//返回第pos位,排列方式等价于返回它>>pos后,再&1 pos=;
flag=b2.test();printf("%s\n",flag?"YES":"NO");
//返回第pos位的bool类型 pos=;
b1.set(pos);b1.set();
//把第pos位变为1;把全体变为1 pos=;
b1.reset(pos);b1.set();
//把第pos位变为0,把全体变为0 pos=;
b1.flip(pos);b1.flip();
//把第pos位取反,把全体取反 return ;
}
例题:
正解并非bitset优化O($n^3$)递推,然而,这样能过;
效率$O({{n^3} \over {64}})$
n=1000显然可以过;
因为洛谷数据1挂了,所以加了特判n==4;
bzoj的话,好像需要把数组之类的开大点?
题解;
(我会说暴力递推比正解难写?)
代码:
#include<cstdio>
#include<bitset>
using namespace std;
bitset<>br[];
bitset<>bd[];
bool f_dl[],f_rl[];
short f_rw[],f_dw[],f_lw[];
int n;
int main()
{
int i,j,k,l;
int already;
long long ans=;
scanf("%d",&n);
if(n==)return ;
//据说第一个点挂了
for(i=;i<=n;i++){
already=(i-)*i/;
for(j=;j<=i;j++)
for(k=;k<=;k++){
scanf("%d",&l);
if(k==)
f_rl[already+j-]=l,f_lw[already+j]=l;
if(k==)
f_dw[already+j]=l;
if(k==){
f_dl[already+j]=l;
if(i!=n)f_rw[already+j+i]=l;
}
}
}
for(i=;i<=n;i++){
already=(i-)*i/;
f_rl[already+i]=f_rw[already+i]=false;
}
for(i=n;i>=;i--){
already=(i-)*i/;
for(j=i;j>=;j--){
if(j!=i&&i!=n){
br[already+j]=br[already+j+]&br[j++already+i];
if(f_rl[already+j])
br[already+j].set(n--j);
bd[already+j]=bd[j+already+i]&bd[j++already+i];
if(f_dl[already+j])
bd[already+j].set(n-i);
if(f_rw[already+j])
f_rw[already+j]+=f_rw[already+j+];
if(f_lw[already+j])
f_lw[already+j]+=f_lw[already+j+i];
if(f_dw[already+j])
f_dw[already+j]+=f_dw[already+j+i+];
}
if(j==n&&i==n){
if(f_dl[already+j])
bd[already+j].set(n-i);
continue;
}
if(j==i){
bd[already+j]=bd[j+already+i]&bd[j++already+i];
if(f_dl[already+j])
bd[already+j].set(n-i);
if(f_lw[already+j])
f_lw[already+j]+=f_lw[already+j+i];
if(f_dw[already+j])
f_dw[already+j]+=f_dw[already+j+i+];
}
if(i==n){
if(f_rl[already+j])
br[already+j].set(n-j-);
if(f_dl[already+j])
bd[already+j].set(n-i);
}
}
}
for(i=;i<=n;i++){
already=(i-)*i/;
for(j=;j<=i;j++){
br[already+j]>>=((n-j)-min(f_dw[already+j],f_rw[already+j]));
bd[already+j]>>=((n-i+)-min(f_dw[already+j],f_lw[already+j]));
k=br[already+j].count();
ans+=(long long )k;
k=bd[already+j].count();
ans+=(long long )k;
}
}
printf("%lld\n",ans);
return ;
}
SB暴力
bitset(01串)优化的更多相关文章
- 牛客 197E 01串
大意: 给定01串, 单点修改, 询问给定区间$[l,r]$, 假设$[l,r]$从左往右得到的二进制数为$x$, 每次操作增加或减少2的幂, 求最少操作数使得$x$为0. 线段树维护2*2矩阵表示低 ...
- 01串LIS(固定串思维)--Kirk and a Binary String (hard version)---Codeforces Round #581 (Div. 2)
题意:https://codeforc.es/problemset/problem/1204/D2 给你一个01串,如:0111001100111011101000,让你改这个串(使0尽可能多,任意 ...
- wannafly25 E 01串
链接 wannafly25 E 01串 给出一个\(01\)串,有两种操作,操作一是将某一个位置的数字修改,操作二是询问某一个区间,将这个区间看做\(1\)个二进制数,可以随意加减\(2\)的幂次,问 ...
- JZOJ P1847:找01串
传送门 DP预处理+贪心 首先设$f[i][j]$表示长度为$i$的01串中有不大于$j$个1,然后显然 $f[i][j]=\sum_{k=1} ^{j} C[i][k]$ $C[i][j]=C[i- ...
- 洛谷P2727 01串 Stringsobits
P2727 01串 Stringsobits 24通过 55提交 题目提供者该用户不存在 标签USACO 难度普及+/提高 提交 讨论 题解 最新讨论 这题的思路是啥啊!!!跪求- 题目背景 考虑 ...
- C++实现01串排序
题目内容:将01串首先按长度排序,长度相同时,按1的个数从少到多进行排序,1的个数相同时再按ASCII码值排序. 输入描述:输入数据中含有一些01串,01串的长度不大于256个字符. 输出描述:重新排 ...
- 01串(dp)
01串 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 ACM的zyc在研究01串,他知道某一01串的长度,但他想知道不含有“11”子串的这种长度的01串共有多少个, ...
- 【巧妙】【3-21个人赛】Problem C 01串
Problem C Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Sub ...
- NYOJ-252 01串
01串 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描写叙述 ACM的zyc在研究01串,他知道某一01串的长度,但他想知道不含有"11"子串的这样的长 ...
随机推荐
- DataList用法总结
设计模版: 页眉<HeaderTemplate> </HeaderTemplate> 页脚<FooterTemplate> </FooterTemplat ...
- log 模块使用 (直接用的方法)
前情提要: 生活中经常用到log 模块. 但是原生的log 模块复杂或者有许多不好用得地方, 在此记录一个经常用的log 的基本操作方法 一:首先导入模块 import logging.config ...
- sqlplus登录远程数据库与数据导出
一.登录 1.cmd中输入sqlplus /nolog 2.链接数据库,root是用户名,root123是密码,ORCL是数据库名.conn root/root123@192.168.1.27:152 ...
- Redis实现分布式存储Session
前言: 在单个项目时,一般都是用HttpSession接口存储当前登录用户的信息.但是在分布式项目的情况下,session是不会共享的,那怎么实现session共享呢?往下看.... 一.准备工作(基 ...
- [LibreOJ #2983]【WC2019】数树【计数】【DP】【多项式】
Description 此题含有三个子问题 问题1: 给出n个点的两棵树,记m为只保留同时在两棵树中的边时连通块的个数,求\(y^m\) 问题2: 给出n个点的一棵树,另外一棵树任意生成,求所有方案总 ...
- css的reset和常用的html标签的默认样式整理
先看下常用的这些标签浏览器的默认样式有哪些: body{ margin: 8px;} hr{ border:1px inset; margin-top:.5em;margin-bottom:.5em; ...
- 用AndroidSDK中的Face Detector实现人脸识别
很多手机图片管理应用都开始集成人脸识别功能.一提到人脸识别,模式识别,滤波,BlahBlah 一堆复杂的技术名字戳入脑海中,立刻觉得这玩意儿没法碰,太玄乎了.其实Android SDK从1.0版本中( ...
- ECharts概念学习系列之ECharts官网教程之在 webpack 中使用 ECharts(图文详解)
不多说,直接上干货! 官网 http://echarts.baidu.com/tutorial.html#%E5%9C%A8%20webpack%20%E4%B8%AD%E4%BD%BF%E7%94% ...
- 解决windows10下总是很快自动黑屏进入睡眠问题
在用win10的过程中总是过几分钟不操作电脑,就自动黑屏睡眠了. 下面讲解一下如何解决这个问题: 第一步:win +r 输入regedit.exe 运行注册表管理器 第二步:定位到 HKEY_LOC ...
- Manjaro安装笔记
安装后就可以先配置国内的软件源.使用以下命令: #排列源 sudo pacman-mirrors -g https://www.jianshu.com/p/f2c9ee00698c https://w ...