147. Black-white king

time limit per test: 0.25 sec.
memory limit per test: 4096 KB
input: standard input
output: standard output
On the chessboard of size NxN leaves only three figures. They are black king, white king and black-white king. The black-white king is very unusual chess piece for us, because it is invisible. Black and white kings decided to conclude a treaty against black-white king (they don't see it, but know that it is somewhere near at chessboard). To realize there plans black and white must meet face to face, what means that they must occupy two neighboring cells (generally each cell has 8 neighbors). The black-white king wants to prevent them from meeting. To do this he must intercept one of the kings before they'll meet, that is to attack one of the kings (make a move to it's cell). If the opponent will make a move on the cell of black-white king, nothing will happen (nobody kill anybody). Your task is to find out have the black-white king chances to win or not. Consider that white and black kings choose the one of the shortest ways to meet. Remember, that they don't see the black-white king. The black-white king also has a strategy: he moves in such a way, that none of the parts of his way can be shortened (for example, he cannot move by zigzag). 
In the case of positive answer (i.e. if the probability of black-white king to win is nonzero) find the minimal number of moves necessary to probable victory. Otherwise find the minimal total number of moves of black and white kings necessary to meet. Remember the order of moves: white king, black king, and black-white king. Any king can move to any of the 8 adjacent cells.
Input
First line of input data contains the natural number N (2<=N<=10^6). The second line contains two natural numbers P1, Q1 (0<P1,Q1<N+1) - coordinates of black king, third line contains P2, Q2 (0<P2,Q2<N+1) - coordinates of white king, forth line contains P3, Q3 (0<P3,Q3<N+1) - coordinates of black-white king. Positions of all kings are different.
Output
Write to the first line word "YES" if the answer id positive, and "NO" - otherwise. To the second line write a single number - the numerical answer to the task.
Sample test(s)
Input
 
 

1 1 
5 3 
2 3
 
 
Output
 
 
YES 
1

这道题看起来很像水题,解起来很像水题,但是有两点 1 黑白王的最短路是指步数最短不是指单纯的路程最短 2 一开始就在一个格子上则yes,0

其中第一点很坑,即使经过队友开导我现在也抱着这是坑题和题意不明的心态

注意黑白王的运动状态可能是以初始点为中心,2*步数+1为正方形边长的空心正方形

这里有几组测试数据,直接找个ac程序对拍吧,比如我写在下面的

10
1 10
1 1
5 5

5
1 1
5 3
2 3

10
1 1
5 5
3 3

5
10 10
5 5
3 4

3
1 1
2 2
3 3

200
1 1
20 100
25 17

500
1 1
200 200
100 100

10
1 1
4 3
2 5

100
10 40
40 30
25 25

21
1 10
21 10
1 5

25
1 10
21 10
21 1

4
3 1
1 2
1 2

66
4 57
31 35
17 38

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
int n,p1,q1,p2,q2,p3,q3;
bool ins(int x,int y1,int y2,int x3,int x4,int y3,int y4){
// printf("x %d y1 %d y2 %d x3 %d y3 %d x4 %d y4 %d\n",x,y1,y2,x3,y3,x4,y4);
if(x<=x4&&x>=x3&&((y1<=y3&&y2>=y3)||(y1<=y4&&y2>=y4)))return true;
if(x==x3||x==x4){
if(max(y1,y3)<=min(y2,y4))return true;
}
return false;
}
int pos(int x){
if(x<1)return 1;
if(x>n)return n;
return x;
}
int calc(){
int sumstep=abs(p1-p2);
int maxstep=abs(p1-p2)/2-1;
if(maxstep<=0)return -1;
int x1=p2==p1?0:(p2-p1)/abs(p2-p1);
int xx,ymax,ymin;
for(int i=1;i<=maxstep;i++){
// printf("%d:\n%d %d %d %d\n",i,pos(q1-i),pos(q1+i),pos(q2-sumstep+i),pos(q2+sumstep-i));
xx=p1+x1*i;
ymin=max(pos(q1-i),pos(q2-sumstep+i));
ymax=min(pos(q1+i),pos(q2+sumstep-i));
if(ins(xx,ymin,ymax,p3-i,p3+i,q3-i,q3+i))return i;
xx=p2-x1*i;
ymin=max(pos(q2-i),pos(q1-sumstep+i));
ymax=min(pos(q2+i),pos(q1+sumstep-i));
if(ins(xx,ymin,ymax,p3-i,p3+i,q3-i,q3+i))return i; }
return -1;
}
int main(){
//freopen("data.txt","w",stdout);
scanf("%d%d%d%d%d%d%d",&n,&p1,&q1,&p2,&q2,&p3,&q3);
if((p1==p3&&q1==q3)||(p2==p3&&q2==q3)){puts("YES\n0");return 0;}
if(abs(p1-p2)<abs(q1-q2)){
swap(p1,q1);swap(p2,q2);swap(p3,q3);
}
int ans=calc();
if(ans==-1)printf("NO\n%d\n",abs(p1-p2)-1);
else {
printf("YES\n%d\n",ans);
}
return 0;
}

  

 
 

sgu 147. Black-white king 思路 坑 难度:1的更多相关文章

  1. SGU 156 Strange Graph 欧拉回路,思路,汉密尔顿回路 难度:3

    http://acm.sgu.ru/problem.php?contest=0&problem=156 这道题有两种点 1. 度数>2 在团中的点,一定连接一个度数为2的点 2. 度数等 ...

  2. SGU 147.Black-white king

    时间限制:0.25s 空间限制:4M 题意: 在一个N*N(N <= 106)的棋盘上,有三个棋子:黑王.白王.黑白王,它们的行走方式一致,每秒向8个方向中的任意一个行走一步. 现在黑王和白王想 ...

  3. sgu 129 Inheritance 凸包,线段交点,计算几何 难度:2

    129. Inheritance time limit per test: 0.25 sec. memory limit per test: 4096 KB The old King decided ...

  4. HDU 4791 Alice's Print Service 思路,dp 难度:2

    A - Alice's Print Service Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & ...

  5. sgu 146. The Runner 取模技巧 难度:1

    146. The Runner time limit per test: 0.25 sec.memory limit per test: 4096 KB input: standard inputou ...

  6. SGU 144. Meeting 概率dp 几何概率分布 难度:0

    144. Meeting time limit per test: 0.25 sec. memory limit per test: 4096 KB Two of the three members ...

  7. ZOJ 3646 Matrix Transformer 二分匹配,思路,经典 难度:2

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4836 因为要使对角线所有元素都是U,所以需要保证每行都有一个不同的列上有U,设 ...

  8. GCJ 2015-Qualification-B Infinite House of Pancakes 枚举,思路,误区 难度:3

    https://code.google.com/codejam/contest/6224486/dashboard#s=p1 题目不难,教训记终生 题目给了我们两种操作:1 所有人都吃一个,简记为消除 ...

  9. SGU 246. Black & White(数论)

    题意: 有2*n-1个黑色和白色的珠子组成的环形项链,求至少需要多少颗黑色珠子才能使任意排列的项链中都存在两个黑珠间有n个珠子. (2*n-1<=2^31-1); Solution: 先分析n= ...

随机推荐

  1. 运行mlflow命令报错 The 'nose' distribution was not found and is required by nose-exclude

    安装好mlflow之后命令行运行: mlflow 得到报错: 解决: sudo pip3 install nose

  2. nodejs学习笔记Node.js 调试命令

    3.4  调试        47  下面是一个简单的例子: $ node debug debug.js < debugger listening on port 5858 connecting ...

  3. Mybatis三剑客之mybatis-generator配置

    mybatis插件在这里: 然后把generatorConfig.xml文件放在resources下: <?xml version="1.0" encoding=" ...

  4. centos 配置redis

    一.配置redis 简介:Redis是使用c语言开发的一个高性能键值数据库.Redis可以通过一些键值类型来存储数据. 下载:官网地址:http://redis.io/ 下载地址:http://dow ...

  5. mysql float 浮点型

    定点数类型 DEC等同于DECIMAL 浮点类型:FLOAT DOUBLE 作用:存储薪资.身高.体重.体质参数等 m,d 都是设置宽度 =============================== ...

  6. Java API操作HA方式下的Hadoop

    通过java api连接Hadoop集群时,如果集群支持HA方式,那么可以通过如下方式设置来自动切换到活动的master节点上.其中,ClusterName 是可以任意指定的,跟集群配置无关,dfs. ...

  7. Grid Search学习

    转自:https://www.cnblogs.com/ysugyl/p/8711205.html Grid Search:一种调参手段:穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性 ...

  8. django开发项目的部署nginx

    Django 部署(Nginx) 本文主要讲解 nginx + uwsgi socket 的方式来部署 Django,比 Apache mod_wsgi 要复杂一些,但这是目前主流的方法. 1. 运行 ...

  9. 浏览器输入url的全过程

    ########################################################################### ######################## ...

  10. 牛客国庆集训派对Day5 Solution

    A    璀璨光滑 留坑. B    电音之王 蒙特马利大数乘模运算 #include <bits/stdc++.h> using namespace std; typedef long ...