Description

    有一天,贝茜无聊地坐在蚂蚁洞前看蚂蚁们进进出出地搬运食物.很快贝茜发现有些蚂蚁长得几乎一模一样,于是她认为那些蚂蚁是兄弟,也就是说它们是同一个家族里的成员.她也发现整个蚂蚁群里有时只有一只出来觅食,有时是几只,有时干脆整个蚁群一起出来.这样一来,蚂蚁们出行觅食时的组队方案就有很多种.作为一头有数学头脑的奶牛,贝茜注意到整个蚂蚁群由T(1≤T≤1000)个家族组成,她将这些家族按1到T依次编号.编号为i的家族里有Ni(1≤Ni≤100)只蚂蚁.同一个家族里的蚂蚁可以认为是完全相同的.
    如果一共有S,S+1….,B(1≤S≤B≤A)只蚂蚁一起出去觅食,它们一共能组成多少种不同的队伍呢?注意:只要两支队伍中所包含某个家族的蚂蚁数不同,我们就认为这两支队伍不同.由于贝茜无法分辨出同一家族的蚂蚁,所以当两支队伍中所包含的所有家族的蚂蚁数都相同时,即使有某个家族换了几只蚂蚁出来,贝茜也会因为看不出不同而把它们认为是同一支队伍.    比如说,有个由3个家族组成的蚂蚁群里一共有5只蚂蚁,它们所属的家族分别为1,1,2,2,3.于是出去觅食时它们有以下几种组队方案:
  ·1只蚂蚁出去有三种组合:(1)(2)(3)
  ·2只蚂蚁出去有五种组合:(1,1)(1,2)(1,3)(2,2)(2,3)
  ·3只蚂蚁出去有五种组合:(1,1,2)(1,1,3)(1,2,2)(1,2,3)(2,2,3)
  ·4只蚂蚁出去有三种组合:(1,2,2,3)(1,1,2,2)(1,1,2,3)
  ·5只蚂蚁出去有一种组合:(1,1,2,2,3)
    你的任务就是根据给出的数据,计算蚂蚁们组队方案的总数.

Input

    第1行:4个用空格隔开的整数T,A,S,B.
    第2到A+1行:每行是一个正整数,为某只蚂蚁所在的家族的编号.

Output

 
    输出一个整数,表示当S到B(包括S和B)只蚂蚁出去觅食时,不同的组队方案数.
    注意:组合是无序的,也就是说组合1,2和组合2,1是同一种组队方式.最后的答案可能很大,你只需要输出答案的最后6位数字.注意不要输出前导0以及多余的空格.
 

Sample Input

3 5 2 3
1
2
2
1
3

INPUT DETAILS:

Three types of ants (1..3); 5 ants altogether. How many sets of size 2 or
size 3 can be made?

Sample Output

10

OUTPUT DETAILS:

5 sets of ants with two members; 5 more sets of ants with three members

 

 
错觉:组合数学???(大雾)
然鹅是(万能)dp
设$f[i][j]$表示从前$i$个家族选出$j$只蚂蚁的方案数
则 $f[i][j]+=\sum_{u=1}^{min(j,d[i])}f[i-1][j-u]$
但是会MLE+TLE
于是我们可以滚动数组+前缀和。
转化后就变成了$f[j]=sum[j]-sum[j-d[i]-1]$
end.
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cctype>
#define re register
using namespace std;
void read(int &x){
char c=getchar();x=;
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=(x<<)+(x<<)+(c^),c=getchar();
}
int min(int a,int b){return a<b?a:b;}
#define p 1000000
int t,a,s,b,q,f[],d[],sum[],ans;
int main(){
read(t);read(a);read(s);read(b); f[]=sum[]=;
for(re int i=;i<=a;++i) read(q),++d[q];
for(re int i=;i<=t;++i){
for(re int j=;j<=b;++j) sum[j]=(sum[j-]+f[j])%p;//前缀和处理
for(re int j=b;j>=;--j){
if(j<=d[i]) f[j]=sum[j]%p;//注意边界
else f[j]=(sum[j]-sum[j-d[i]-])%p;
}
}
for(re int i=s;i<=b;++i) ans=(ans+f[i])%p;
printf("%d",ans);
return ;
}

bzoj1630 / bzoj2023 [Usaco2005 Nov]Ant Counting 数蚂蚁的更多相关文章

  1. bzoj2023[Usaco2005 Nov]Ant Counting 数蚂蚁*&&bzoj1630[Usaco2007 Demo]Ant Counting*

    bzoj2023[Usaco2005 Nov]Ant Counting 数蚂蚁&&bzoj1630[Usaco2007 Demo]Ant Counting 题意: t个族群,每个族群有 ...

  2. BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁

    2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 56  Solved: 16[S ...

  3. BZOJ2023: [Usaco2005 Nov]Ant Counting 数蚂蚁(dp)

    题意 题目描述的很清楚...  有一天,贝茜无聊地坐在蚂蚁洞前看蚂蚁们进进出出地搬运食物.很快贝茜发现有些蚂蚁长得几乎一模一样,于是她认为那些蚂蚁是兄弟,也就是说它们是同一个家族里的成员.她也发现整个 ...

  4. 1630/2023: [Usaco2005 Nov]Ant Counting 数蚂蚁

    2023: [Usaco2005 Nov]Ant Counting 数蚂蚁 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 85  Solved: 40[S ...

  5. 【bzoj2023/1630】[Usaco2005 Nov]Ant Counting 数蚂蚁 dp

    题解: 水题 f[i][j] 前i种用了j个,前缀和优化就可以了

  6. BZOJ 2023 [Usaco2005 Nov]Ant Counting 数蚂蚁:dp【前缀和优化】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2023 题意: 有n个家族,共m只蚂蚁(n <= 1000, m <= 1000 ...

  7. bzoj 2023: [Usaco2005 Nov]Ant Counting 数蚂蚁【生成函数||dp】

    用生成函数套路推一推,推完老想NTT--实际上把这个多项式乘法看成dp然后前缀和优化一下即可 #include<iostream> #include<cstdio> using ...

  8. 【noi 2.6_9289】Ant Counting 数蚂蚁{Usaco2005 Nov}(DP)

    题意:有M个家族的蚂蚁,各Ni只(互相相同).问选出 l~r 只的不同方案数. 解法:很基础的一种DP,不要被"排列组合"所迷惑了啊~我之前接触过这个类型,可惜又忘了,一定要记住! ...

  9. [poj3046][Ant counting数蚂蚁]

    题目链接 http://noi.openjudge.cn/ch0206/9289/ 描述 Bessie was poking around the ant hill one day watching ...

随机推荐

  1. 判断页面中的js方法是否存在,存在就调用它,不存在则忽略

    if(typeof queryResource != 'undefined' && queryResource instanceof Function) queryResource(a ...

  2. JS时间格式化函数

    Date.prototype.format = function (format) { var o = { "M+": this.getMonth() + 1, //month & ...

  3. const关键字浅析

    1  const变量 const double PI = 3.14159; 定义之后不能被修改,所以定义时必须初始化. const int i, j = 0; // error: i is unini ...

  4. Android Framewrork资源类型有哪些?

    1. Google Framework res frameworks/base/core/res/res/values <public type="attr" name=&q ...

  5. vux报错二

    执行npm run build后 "build": "node build/build.js",   // 输出提示信息 - 提示用户请在 http 服务下查看 ...

  6. linux 下 安装go

    首先肯定是下载资源包了,链接汇总在http://www.golangtc.com/download,我用的是 http://www.golangtc.com/static/go/go1.4beta1. ...

  7. Android - XML序列化

    1.xml文件的序列化:采用XmlSerializer来实现XML文件的序列化.相比传统方式,更高效安全 MainActivity.java package com.example.test_buil ...

  8. PHP概率算法---砸金蛋示例

    这是一个很经典的概率算法: function get_rand($proArr) { $result = ''; //概率数组的总概率精度 $proSum = array_sum($proArr); ...

  9. 170622、springboot编程之JPA操作数据库

    JPA操作数据库 什么事JAP?JPA全称Java Persistence API.JPA通过JDK 5.0注解或XML描述对象-关系表的映射关系,并将运行期的实体对象持久化到数据库中. 1.在pom ...

  10. 使用webmagic搭建一个简单的爬虫

    刚刚接触爬虫,听说webmagic很不错,于是就了解了一下. webmagic的是一个无须配置.便于二次开发的爬虫框架,它提供简单灵活的API,只需少量代码即可实现一个爬虫. 这句话说的真的一点都不假 ...