【BZOJ4337】BJOI2015 树的同构

Description

树是一种很常见的数据结构。
我们把N个点,N-1条边的连通无向图称为树。
若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树。
对于两个树T1和T2,如果能够把树T1的所有点重新标号,使得树T1和树T2完全相同,那么这两个树是同构的。也就是说,它们具有相同的形态。
现在,给你M个有根树,请你把它们按同构关系分成若干个等价类。

Input

第一行,一个整数M。
接下来M行,每行包含若干个整数,表示一个树。第一个整数N表示点数。接下来N个整数,依次表示编号为1到N的每个点的父亲结点的编号。根节点父亲结点编号为0。

Output

输出M行,每行一个整数,表示与每个树同构的树的最小编号。

Sample Input

4
4 0 1 1 2
4 2 0 2 3
4 0 1 1 1
4 0 1 2 3

Sample Output

1
1
3
1

HINT

【样例解释】
编号为1, 2, 4 的树是同构的。编号为3 的树只与它自身同构。 
100% 的数据中,1 ≤ N, M ≤ 50。 

题解:题意有问题,题中的树同构是无根树的同构。。。

一开始写了个hash,被卡了,于是学了一发高端的做法。

如果是一棵有根树,那么我们从根开始DFS整棵树,将每个节点的入栈和出栈看成左括号和右括号,最终得到一个括号序列即能代表整棵树。

那么无根树呢?以重心为根即可。如果有两个重心呢?各跑一遍,然后取字典序较小的那个即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <string>
using namespace std;
int n,mn,m,cnt;
int bel[55],siz[55],to[110],next[110],head[55],mx[55];
string f[55],p[55],g[55];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
inline void add(int a,int b)
{
to[cnt]=b,next[cnt]=head[a],head[a]=cnt++;
}
void dfs(int x,int fa)
{
int i,sum=0;
for(i=head[x];i!=-1;i=next[i]) if(to[i]!=fa) dfs(to[i],x);
for(i=head[x];i!=-1;i=next[i]) if(to[i]!=fa) p[++sum]=f[to[i]];
f[x]="(";
sort(p+1,p+sum+1);
for(i=1;i<=sum;i++) f[x]+=p[i];
f[x]+=")";
}
void getrt(int x,int fa)
{
mx[x]=0,siz[x]=1;
for(int i=head[x];i!=-1;i=next[i]) if(to[i]!=fa) getrt(to[i],x),siz[x]+=siz[to[i]],mx[x]=max(mx[x],siz[to[i]]);
mx[x]=max(mx[x],m-siz[x]);
mn=min(mn,mx[x]);
}
string get()
{
string tmp="";
m=rd();
int i,a;
memset(head,-1,sizeof(head)),cnt=0;
for(i=1;i<=m;i++)
{
a=rd();
if(a) add(a,i),add(i,a);
}
mn=1<<30,getrt(1,0);
for(i=1;i<=m;i++) if(mx[i]==mn)
{
dfs(i,0);
tmp=max(tmp,f[i]);
}
return tmp;
}
int main()
{
n=rd();
int i,j;
for(i=1;i<=n;i++) g[i]=get();
for(i=1;i<=n;i++)
{
for(j=1;j<i;j++) if(g[i]==g[j]) break;
printf("%d\n",j);
}
return 0;
}//4 4 0 1 1 2 4 2 0 2 3 4 0 1 1 1 4 0 1 2 3

【BZOJ4337】BJOI2015 树的同构 括号序列的更多相关文章

  1. bzoj4337: BJOI2015 树的同构 树哈希判同构

    题目链接 bzoj4337: BJOI2015 树的同构 题解 树哈希的一种方法 对于每各节点的哈希值为hash[x] = hash[sonk[x]] * p[k]; p为素数表 代码 #includ ...

  2. [BZOJ4337][BJOI2015]树的同构(树的最小表示法)

    4337: BJOI2015 树的同构 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1023  Solved: 436[Submit][Status ...

  3. BZOJ4337:[BJOI2015]树的同构(树hash)

    Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如 ...

  4. BZOJ4337: BJOI2015 树的同构(hash 树同构)

    题意 题目链接 Sol 树的同构问题,直接拿hash判一下,具体流程大概是这样的: 首先转化为有根树,预处理出第\(i\)棵树以\(j\)为根时的hash值. 那么两个树同构当且仅当把两棵树的hash ...

  5. bzoj4337: BJOI2015 树的同构

    hash大法好 #include <iostream> #include <cstdio> #include <cstring> #include <cmat ...

  6. BZOJ 4337: BJOI2015 树的同构 树hash

    4337: BJOI2015 树的同构 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4337 Description 树是一种很常见的数 ...

  7. BZOJ4337:[BJOI2015]树的同构——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4337 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根, ...

  8. 4337: BJOI2015 树的同构

    题解: 树的同构的判定 有根树从根开始进行树hash 先把儿子的f进行排序 $f[i]=\sum_{j=1}^{k} { f[j]*prime[j]} +num[i]$(我没有仔细想这样是不是树是唯一 ...

  9. [BJOI2015]树的同构

    嘟嘟嘟 判断树的同构的方法就是树上哈希. 如果树是一棵有根树,那么只要从根节点出发dfs,每一个节点的哈希值等于按传统方式算出来的子树的哈希值的结果.需要注意的是,算完子树的哈希值后要先排序再加起来, ...

随机推荐

  1. ftp的主动模式active mode和被动模式 passive mode的配置和区别

    ftp的主动模式active mode和被动模式 passive mode的配置和区别 2017年05月08日 17:47:16 阅读数:21768 本文主要记录的是在linux上的区别,弄了一整天才 ...

  2. ThinkPHP3.2 分组分模块

    ThinkPHP/Conf/convention.php 'CONTROLLER_LEVEL'      =>  1, 修改成 'CONTROLLER_LEVEL'      =>  2,

  3. LoadRunner性能测试基础知识问答

    Q1:什么是负载测试?什么是性能测试? A1:负载测试是通过逐步增加系统负载,测试系统性能的变化,并最终确定在满足性能指标的情况下,系统所能承受的最大负载量的测试,例如,访问一个页面的响应时间规定不超 ...

  4. Qt 事件处理的五个层次

    看了这篇文章(见http://devbean.blog.51cto.com/448512/231861),然后经过自己的思考,把Qt事件处理的五个层次.同时也是Qt时间处理的流程画了出来.若有不对请批 ...

  5. D方法 自动完成

    控制器 public function insert(){ $Wztj = D("Wztj");if($vo=$Wztj->create()){ if($Wztj->a ...

  6. 利用CMake和OpenCV源代码生成Visual Studio工程

    OpenCV1.0版本有windows,linux之分,笔者曾经一直使用Opencv1.0.这个版本在下载,安装之后,在 \OpenCV\_make文件夹下面已经存在了一个opencv.dsw的工程文 ...

  7. (转)V4L2 Video overlay, Video output, Video output overlay的区别

    原文地址:http://blog.csdn.net/kickxxx/article/details/7755127 三者都是V4L2定义的接口,英文原文参见 http://v4l2spec.bytes ...

  8. R语言中两个数组(或向量)的外积怎样计算

    所谓数组(或向量)a和b的外积,指的是a的每个元素和b的每个元素搭配在一起相乘得到的新元素.当然运算规则也可自己定义.外积运算符为 %o%(注意:百分号中间的字母是小写的字母o).比如: > a ...

  9. js得到当前文档的编码:document.characterSet

    <!DOCTYPE HTML> <html > <head> <meta charset="utf-8"> <!--meta ...

  10. JavaSE(八)集合之List

    前面一篇的corejava讲的是集合的概述,这一篇我将详细的和大家讲解一下Collection下面的List.set.queue这三个子接口.希望大家能得到提升. 一.List接口 1.1.List接 ...