题目链接

URAL1519

题解

看题型显然插头\(dp\)

考虑如何设计状态



有这样一个方案

当我们决策到某个位置

轮廓线长这样



你会发现插头一定是相互匹配的

所以我们实际上可以把状态用括号序列表示

如上图就是(#)()

是一个三进制数

那么我们设\(f[i][j][s]\)表示决策到\((i,j)\),轮廓线状态为\(s\)的方案数

我们同时记\(0\)为空插头,\(1\)为表示左括号的插头,\(2\)为表示有括号的插头

先不管空间问题,我们考虑一下转移

有比较多的情况

我们记\(b1\),\(b2\)为\((i,j)\)的左、上插头

\(b1 = 0,b2 = 0\)

首先如果\((i,j)\)本身是障碍格,那么它右插头和下插头也为\(0\)

否则如果对应方向没有障碍,\((i,j)\)右下插头为\(12\)

\(b1\)和\(b2\)有一者为\(0\),那么转移的时候另一个括号的位置放哪里都可以,只需要判断有无障碍

\(b1\)和\(b2\)为同一种括号,我们只需往另一侧查找匹配的括号,改变方向

例如((#))变为###()

如图所示:



把左边两个连起来,右边两个插头就变成了匹配的括号

即由((#))变为###()

\(b1 = 2\)且\(b2 = 1\)

就是(#)(#)这种情况,可以变为(####)

\(b1 = 1\)且\(b2 = 2\)

除非是最后一个格子,否则不能贸然连起来,不然就会出现不连通的情况

具体实现的时候,可以使用四进制而结合位运算加快速度

由于空间比较小,我们需要滚动数组,并且使用\(hash\)表储存状态

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#include<vector>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 13,maxm = 5000000,INF = 1000000000,P = 201611;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,m,sx,sy;
char S[maxn][maxn];
int now,tot[2],h[2][P],nxt[2][maxm],num[2][maxm];
LL f[2][maxm],ans;
inline void add(int s,LL x){
int tmp = s % P;
for (int k = h[now][tmp]; k; k = nxt[now][k])
if (num[now][k] == s){f[now][k] += x; return;}
nxt[now][++tot[now]] = h[now][tmp]; h[now][tmp] = tot[now];
num[now][tot[now]] = s; f[now][tot[now]] = x;
}
inline bool isok(int x,int y){
return x >= 1 && x <= n && y >= 1 && y <= m && S[x][y] != '*';
}
void work(){
int las = 1,e,s,b1,b2;
LL x;
f[0][1] = tot[0] = 1; num[0][1] = 0;
for (int i = 1; i <= n; i++){
for (int k = 1; k <= tot[now]; k++) num[now][k] <<= 2;
for (int j = 1; j <= m; j++){
now ^= 1; las ^= 1;
cls(h[now]); tot[now] = 0;
for (int k = 1; k <= tot[las]; k++){
s = num[las][k]; x = f[las][k];
b1 = (s >> (j - 1 << 1)) & 3;
b2 = (s >> (j << 1)) & 3;
e = s ^ (b1 << (j - 1 << 1)) ^ (b2 << (j << 1));
if (b1 == 0 && b2 == 0){
if (S[i][j] == '*') add(e,x);
else if (isok(i + 1,j) && isok(i,j + 1))
add(e | (1 << (j - 1 << 1)) | (2 << (j << 1)),x);
}
else if (b1 == 0){
if (isok(i,j + 1)) add(s,x);
if (isok(i + 1,j)) add(e | (b2 << (j - 1 << 1)),x);
}
else if (b2 == 0){
if (isok(i + 1,j)) add(s,x);
if (isok(i,j + 1)) add(e | (b1 << (j << 1)),x);
}
else if (b1 == 1 && b2 == 1){
int cnt = 1;
for (int p = j + 1; p <= m + 1; p++){
if ((e >> (p << 1) & 3) == 1) cnt++;
if ((e >> (p << 1) & 3) == 2) cnt--;
if (!cnt){add(e ^ (3 << (p << 1)),x); break;}
}
}
else if (b1 == 2 && b2 == 2){
int cnt = 1;
for (int p = j - 2; ~p; p--){
if ((e >> (p << 1) & 3) == 2) cnt++;
if ((e >> (p << 1) & 3) == 1) cnt--;
if (!cnt){add(e ^ (3 << (p << 1)),x); break;}
}
}
else if (b1 == 2 && b2 == 1) add(e,x);
else if (i == sx && j == sy) ans += x;
}
}
}
printf("%lld\n",ans);
}
int main(){
n = read(); m = read();
REP(i,n) scanf("%s",S[i] + 1);
REP(i,n) REP(j,m) if (S[i][j] == '.') sx = i,sy = j;
work();
return 0;
}

URAL1519 Formula 1 【插头dp】的更多相关文章

  1. URAL1519 Formula 1 —— 插头DP

    题目链接:https://vjudge.net/problem/URAL-1519 1519. Formula 1 Time limit: 1.0 secondMemory limit: 64 MB ...

  2. [URAL1519] Formula 1 [插头dp入门]

    题面: 传送门 思路: 插头dp基础教程 先理解一下题意:实际上就是要你求这个棋盘中的哈密顿回路个数,障碍不能走 看到这个数据范围,还有回路处理,就想到使用插头dp来做了 观察一下发现,这道题因为都是 ...

  3. 【BZOJ1814】Ural 1519 Formula 1 插头DP

    [BZOJ1814]Ural 1519 Formula 1 题意:一个 m * n 的棋盘,有的格子存在障碍,求经过所有非障碍格子的哈密顿回路个数.(n,m<=12) 题解:插头DP板子题,刷板 ...

  4. 【Ural】1519. Formula 1 插头DP

    [题目]1519. Formula 1 [题意]给定n*m个方格图,有一些障碍格,求非障碍格的哈密顿回路数量.n,m<=12. [算法]插头DP [题解]<基于连通性状态压缩的动态规划问题 ...

  5. bzoj1814 Ural 1519 Formula 1(插头dp模板题)

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 924  Solved: 351[Submit][Sta ...

  6. bzoj 1814 Ural 1519 Formula 1 ——插头DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1814 普通的插头 DP .但是调了很久.注意如果合并两个 1 的话,不是 “把向右第一个 2 ...

  7. Ural 1519 Formula 1 插头DP

    这是一道经典的插头DP单回路模板题. 用最小表示法来记录连通性,由于二进制的速度,考虑使用8进制. 1.当同时存在左.上插头的时候,需要判断两插头所在连通块是否相同,若相同,只能在最后一个非障碍点相连 ...

  8. URAL Formula 1 ——插头DP

    [题目分析] 一直听说这是插头DP入门题目. 难到爆炸. 写了2h,各种大常数,ural垫底. [代码] #include <cstdio> #include <cstring> ...

  9. bzoj 1814 Ural 1519 Formula 1 插头DP

    1814: Ural 1519 Formula 1 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 942  Solved: 356[Submit][Sta ...

  10. BZOJ1814: Ural 1519 Formula 1(插头Dp)

    Description Regardless of the fact, that Vologda could not get rights to hold the Winter Olympic gam ...

随机推荐

  1. springAOP之代理模式

    springAOP指的是在spring中的AOP,什么是AOP,相对于java中的面向对象(oop),在面向对象中一些公共的行为,像日志记录,权限验证等如果都使用面向对象来做,会在每个业务方法中都写上 ...

  2. ln in Linux

    默认情况(硬连接) ln 目标 连接名称 ll -i 显示文件的inode信息,即文件节点信息 ➜  test1 ll -i 1.txt 27987655 -rw-r--r--  1 myuser   ...

  3. 在tomcat5中发布项目时,用IP地址+端口不能访问项目,而用localhost加端口时可以访问成功

    最近在开发项目中,遇到的一个问题是: 在 tomcat中发布一个web项目,但是发布成功后,只能用http://localhost:8080/fm访问项目,不能用 http://127.0.0.1:8 ...

  4. 关于scrum敏捷测试

    关于scrum的一些定义 敏捷软件开发方法是一种把新增功能通过较小的循环逐步迭代添加到项目中(的项目管理方法),工作是由自我组织的团队以高效合作的方式拥抱和适应变化来保证客户需求被真正满足的方式来完成 ...

  5. 多重共性和VIF检验

    图片来源https://wenku.baidu.com/view/7008df8383d049649b66581a.html 和 https://wenku.baidu.com/view/6acdf9 ...

  6. Android 6.0 中的 Wifi 连接

    Android 6.0 中的 Wifi 连接 这几天在写一个软件,结果被其中的 wifi 连接问题困扰了 3 天. 先描述下需求: usb 接口接了一根 usb2serial,通过这个接口接收命令 当 ...

  7. oracle selinux 问题

    Error: cannot restore segment prot after reloc: Permission Denied http://www.oracledistilled.com/ora ...

  8. Java中的Object类的toString()方法,equals()方法

    Object类是所有类的父类,若没有明确使用extends关键字明确表示该类继承哪个类,那么它就默认继承Object类,也就可以使用Object中的方法: 1.toString 如果输出一个对象的时候 ...

  9. ncnblogs.com的用户体验

    你是什么样的用户, 有什么样的心理, 对cnblogs 的期望值是什么? 我是一名普通的学生,上cnblogs的期望是发表博客完成老师布置的任务. 当你第一次使用cnblogs 的功能的时候, 碰到了 ...

  10. 团队Alpha冲刺(八)

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示 ...