【arc080F】Prime Flip
Solution
这题的话。。差分套路题(算吗?反正就是想到差分就很好想了qwq)
(但是问题就是我不会这种套路啊qwq题解原话是:“这种翻面一段区间的题,就是差分套路题”==)
我们定义一个新的数组\(A\),\(A_i\)表示的是第\(i\)个和第\(i-1\)个的状态是否相同,是的话为\(0\)否则为\(1\),至于第\(0\)个的话。。我们强行定义第\(0\)个位置反面向上
这样我们就得到了一个\(01\)序列,然后原来的一段需要操作的区间就变成了两个\(1\),那么我们现在要做的事情就变成了,每次找一个奇质数\(p\),将第\(i\)位和第\(i+p\)位取反,最后让所有的\(1\)变成\(0\)即可
接下来我们根据两个\(1\)的下标之差(记为相距)来分类讨论:
1.相距为奇质数:只需要\(1\)步,为了使得使用的步数尽量少,我们在后面的操作中显然应该尽量采取这种操作
2.相距为偶数:需要\(2\)步,这里用到哥德巴赫猜想,大于等于\(6\)的偶数可以分解成两个奇质数之和
3.相距为奇合数:需要\(3\)步,具体就是将这个奇合数变成一个奇质数与偶数之差就好了
然后我们要尽量让第一种操作尽量多,因为每次是挑两个\(1\)消掉,所以这里可以转化成一个最大匹配问题:我们将所有的\(1\)按照下标的奇偶性分成两类,偶数往奇数连,两个点连边当且仅当下标之差是一个奇质数,这样跑一遍最大匹配就可以得到尽量使用第一种操作的数量,记为\(ans1\)
然而这个时候可能还有剩的数,那么我们优先第二种操作,也就是同组匹配(差值为偶数),当这样匹配完了之后还有剩余,只可能是两组各剩一个的情况(因为\(1\)总是成对出现的,总数量肯定是一个偶数),那么这两个再用第三种操作匹配掉,然后答案加\(3\)就好了
额当然。。二分图匹配可以跑网络流qwq会快很多qwq
代码大概长这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int N=210,MX=1e7+10;
struct xxx{
int y,nxt;
}a[N*N*2];
int h[N];
int inpt[N],p[MX],mark[MX],mnp[MX],col[MX],A[MX];
int used[N*2],match[N*2],llis[N*2],rlis[N*2];
int n,m,mx,tot,T,lcnt,rcnt;
ll ans;
void add(int x,int y){a[++tot].y=y; a[tot].nxt=h[x]; h[x]=tot;}
void prework(int n){
int cnt=0;
mnp[1]=1;
mark[1]=1;
for (int i=2;i<=n;++i){
if (!mark[i])
p[++cnt]=i,mnp[i]=i;
for (int j=1;j<=cnt&&i*p[j]<=n;++j){
mark[i*p[j]]=true;
if (i%p[j]==0){
mnp[i*p[j]]=p[j];
break;
}
}
}
}
bool check(int x){
int u;
for (int i=h[x];i!=-1;i=a[i].nxt){
u=a[i].y;
if (used[u]==T) continue;
used[u]=T;
if (!match[u]||check(match[u])){
match[x]=u; match[u]=x;
return true;
}
}
return false;
}
void build(){
int x,y;
memset(h,-1,sizeof(h));
tot=0;
for (int i=1;i<=llis[0];++i){
x=llis[i];
for (int j=1;j<=rlis[0];++j){
y=rlis[j];
if (mark[abs(x-y)]) continue;
add(i,j+llis[0]);
add(j+llis[0],i);
}
}
}
void solve(){
llis[0]=0; rlis[0]=0;
int tmpcnt=0;
for (int i=1;i<=mx;++i)
if (col[i]!=col[i-1]){
if (i&1)
rlis[++rlis[0]]=i;
else
llis[++llis[0]]=i;
++tmpcnt;
}
build();
T=0;
for (int i=1;i<=llis[0];++i){
if (!match[i]){
++T;
ans+=check(i);
}
}
int tmp=0;
if (ans<llis[0]) tmp+=(llis[0]-ans)/2*2;
if (ans<rlis[0]) tmp+=(rlis[0]-ans)/2*2;
if ((llis[0]-ans)%2==1) tmp+=3;
printf("%d\n",ans+tmp);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d",&n);
memset(col,0,sizeof(col));
prework(MX-10);
mx=0;
for (int i=1;i<=n;++i){
scanf("%d",inpt+i);
col[inpt[i]]=1;
mx=max(mx,inpt[i]);
}
++mx;
solve();
}
【arc080F】Prime Flip的更多相关文章
- 【ARC080F】Prime Flip 差分+二分图匹配
Description 有无穷个硬币,初始有n个正面向上,其余均正面向下. 你每次可以选择一个奇质数p,并将连续p个硬币都翻转. 问最小操作次数使得所有硬币均正面向下. Input 第一行 ...
- 【CF912E】Prime Game(meet in the middle)
[CF912E]Prime Game(meet in the middle) 题面 CF 懒得翻译了. 题解 一眼题. \(meet\ in\ the\ middle\)分别爆算所有可行的两组质数,然 ...
- 【POJ1811】Prime Test
[题目大意] 若n是素数,输出“Prime”,否则输出n的最小素因子,(n<=2^54) [题解] 和bzoj3667差不多,知识这道题没那么坑. 直接上Pollord_Rho和Rabin_Mi ...
- 【数论】Prime Time UVA - 10200 大素数 Miller Robin 模板
题意:验证1~10000 的数 n^n+n+41 中素数的个数.每个询问给出a,b 求区间[a,b]中质数出现的比例,保留两位 题解:质数会爆到1e8 所以用miller robin , 另外一个优 ...
- 【Poj3126】【BNUOJ3245】Prime Path
http://poj.org/problem?id=3126 https://www.bnuoj.com/v3/problem_show.php?pid=3245 题目鬼图 刚开始看到题目的图觉得这题 ...
- 【leetcode】1072. Flip Columns For Maximum Number of Equal Rows
题目如下: Given a matrix consisting of 0s and 1s, we may choose any number of columns in the matrix and ...
- 【leetcode】926.Flip String to Monotone Increasing
题目如下: A string of '0's and '1's is monotone increasing if it consists of some number of '0's (possib ...
- 【leetcode】951. Flip Equivalent Binary Trees
题目如下: For a binary tree T, we can define a flip operation as follows: choose any node, and swap the ...
- 【LeetCode】294. Flip Game II 解题报告 (C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 记忆化搜索 日期 题目地址:https://leetc ...
随机推荐
- PHP反序列化漏洞代码审计—学习资料
1.什么是序列化 A.PHP网站的定义: 所有php里面的值都可以使用函数serialize()来返回一个包含字节流的字符串来表示.unserialize()函数能够重新把字符串变回php原来的值. ...
- Just a Hook:线段树+区间修改
E - Just a Hook In the game of DotA, Pudge’s meat hook is actually the most horrible thing for most ...
- python错误记录
在主函数里调用其他函数时形参顺序要一致 错例如下:
- 苹果没放弃手写笔 这样的iPad你想要吗?
12 月 31 日,美国专利与商标局(The U.S. Patent and Trademark Office)当地时间周四批准了一项来自苹果的专利申请,该专利主要描述的是一种可以通过陀螺仪.无线通讯 ...
- node项目设置环境变量
在UNIX系统中: $ NODE_ENV=production node app 在Windows中: $ set NODE_ENV=production $ node app 这些环境变量会出现在程 ...
- Xftp安装和使用的视频录制方法
内容: 1.使用工具 2.操作步骤及方法 视频地址: http://v.youku.com/v_show/id_XMzEwNjg2MTg2NA==.html?spm=a2h3j.8428770.341 ...
- 第一次c++作业(感觉不是很好系列)
日常先贴github的地址 https://github.com/egoistor/Elevator-scheduling 然后我觉得学习了半天,构造函数似懂非懂(用的是class自动生成的构造函数, ...
- java沙盒
JAVA的安全模型不同于传统的安全方法,传统的安全方法中,大多数操作系统允许应用程序充分访问系统资源,在操作系统不提供安全保护的机器里,运行环境不能被信任.为了弥补这个缺陷,安全策略经常要求在应用程序 ...
- 这些天php面试的总结
面试总结 记录一些本人在面试中遇到的觉得有些掌握不好的面试题,下面的答案都是本人回答的,如果哪里不对的话,希望各位能够指出. 1.Git fetch和git pull的区别 Git fetch相当于从 ...
- Oracle数据库表空间常用操作
1. 查看所有表空间大小 SQL> select tablespace_name,sum(bytes)/1024/1024 from dba_data_files group by tables ...