好题!学习了好多

写法①:

  先求出gcd不为1的集合的数量,显然我们可以从大到小枚举计算每种gcd的方案(其实也是容斥),或者可以直接枚举gcd然后容斥(比如最大值是6就用2^cnt[2]-1+3^cnt[3]-1-(6^cnt[6]-1),cnt[x]表示x的倍数的个数),用容斥计算的话可以发现系数是莫比乌斯函数的相反数,就可以线性筛了。下面会记录一种O(MAX*ln(MAX))的筛法...求cnt的话可以选择直接枚举倍数计算O(MAX*ln(MAX))或者分解质因数,因为1e7内最多有8个不同质因子,求出所有质因子再枚举子集给cnt加上贡献。

  然后枚举每一个数计算它对答案的贡献,就是gcd不为1的集合的数量里去掉这个数的因数的贡献,分解质因数之后一个一个去掉即可。

  这种写法就不写代码啦~(其实写了但是写炸了懒得调了

O(MAX*ln(MAX))莫比乌斯函数筛:

miu[]=;
for(int i=;i<=mx;i++)
for(int j=i<<;j<=mx;j+=i) miu[j]-=miu[i];

写法②:

  这是一种更简单的写法,尝试把上面统计数量后计算每个数的贡献这两个过程合二为一。

  考虑去掉一个数的因数对答案的贡献怎么更简单地做,可以发现一个数的所有因数的cnt里都有这个数的贡献,所以我们实际上可以在统计答案的时候直接计算所有数的贡献顺便去掉这个数的贡献,也就是以下的公式:

  中间部分是gcd为x的时候的方案数,右边是gcd为x时对此式子有贡献的数的数量。

  我们求莫比乌斯函数的时候用上上面的O(MAX*ln(MAX))版筛法就可以把代码长度做到极短了。

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#define MOD(x) ((x)>=mod?(x)-mod:(x))
using namespace std;
const int maxn=, maxm=1e7+, inf=1e9+, mod=1e9+;
int n, x, mx, ans;
int mi[maxn], cnt[maxm], miu[maxm];
void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-' && (f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
int main()
{
read(n); mi[]=; for(int i=;i<=n;i++) mi[i]=(1ll*mi[i-]<<)%mod;
for(int i=;i<=n;i++) read(x), cnt[x]++, mx=max(mx, x);
miu[]=;
for(int i=;i<=mx;i++)
{
for(int j=i<<;j<=mx;j+=i) miu[j]-=miu[i], cnt[i]+=cnt[j];
if(!cnt[i] || !miu[i]) continue;
int delta=1ll*miu[i]*(mi[cnt[i]]-)%mod*(cnt[i]-n)%mod;
delta=MOD(delta+mod); ans=MOD(ans+delta);
}
printf("%d\n", ans);
}

写法③:

  是在写法②的基础上的,可以省去求莫比乌斯函数的过程。

  可以倒着枚举数i,一般可以较为简单的计算i的倍数的总贡献,然后删去i的倍数(此时不包括i)的贡献(此时倍数的贡献已经计算好了)来得到i的贡献。注意!!!这里i的答案指的是如果计算i的话答案是多少,但实际上可能是需要减去的,它会被它的因数减去而得到它的因数的答案。

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#define MOD(x) (x>=mod?(x)-mod:(x))
using namespace std;
const int maxn=, inf=1e9, maxm=1e7+, mod=1e9+;
int n, x, mx, anss;
int ans[maxm], mi[maxn], cnt[maxm];
inline void read(int &k)
{
int f=; k=; char c=getchar();
while(c<'' || c>'') c=='-'&&(f=-), c=getchar();
while(c<='' && c>='') k=k*+c-'', c=getchar();
k*=f;
}
int main()
{
read(n);
for(int i=;i<=n;i++) read(x), cnt[x]++, mx=max(mx, x);
mi[]=; for(int i=;i<=n;i++) mi[i]=(1ll*mi[i-]<<)%mod;
for(int i=mx;i>=;i--)
{
int sum=cnt[i];
for(int j=i<<;j<=mx;j+=i) sum+=cnt[j], ans[i]=MOD(ans[i]-ans[j]+mod);
ans[i]+=1ll*(mi[sum]-)*(n-sum)%mod; ans[i]=MOD(ans[i]);
anss=MOD(anss+ans[i]);
}
printf("%d\n", anss);
}

Codeforces 585E. Present for Vitalik the Philatelist(容斥)的更多相关文章

  1. Codeforces 585E - Present for Vitalik the Philatelist(简单莫反+狄利克雷前缀和)

    Codeforces 题目传送门 & 洛谷题目传送门 一道不算太难的 D1E 罢--虽然我不会做/kk u1s1 似乎这场 Div1 挺水的?F 就是个 AC 自动机板子还被评到了 3k2-- ...

  2. 【CF 585E】 E. Present for Vitalik the Philatelist

    E. Present for Vitalik the Philatelist time limit per test 5 seconds memory limit per test 256 megab ...

  3. 【CodeForces】585 E. Present for Vitalik the Philatelist

    [题目]E. Present for Vitalik the Philatelist [题意]给定n个数字,定义一种合法方案为选择一个数字Aa,选择另外一些数字Abi,令g=gcd(Ab1...Abx ...

  4. CF585E. Present for Vitalik the Philatelist [容斥原理 !]

    CF585E. Present for Vitalik the Philatelist 题意:\(n \le 5*10^5\) 数列 \(2 \le a_i \le 10^7\),对于每个数\(a\) ...

  5. 「CF585E」 Present for Vitalik the Philatelist

    「CF585E」 Present for Vitalik the Philatelist 传送门 我们可以考虑枚举 \(S'=S\cup\{x\}\),那么显然有 \(\gcd\{S'\}=1\). ...

  6. CF 585 E Present for Vitalik the Philatelist

    CF 585 E Present for Vitalik the Philatelist 我们假设 $ f(x) $ 表示与 $ x $ 互质的数的个数,$ s(x) $ 为 gcd 为 $ x $ ...

  7. CF585E:Present for Vitalik the Philatelist

    n<=500000个2<=Ai<=1e7的数,求这样选数的方案数:先从其中挑出一个gcd不为1的集合,然后再选一个不属于该集合,且与该集合内任意一个数互质的数. 好的统计题. 其实就 ...

  8. Codeforces Round #345 (Div. 1) A - Watchmen 容斥

    C. Watchmen 题目连接: http://www.codeforces.com/contest/651/problem/C Description Watchmen are in a dang ...

  9. CodeForces 559C Gerald and Gia (格路+容斥+DP)

    CodeForces 559C Gerald and Gia 大致题意:有一个 \(N\times M\) 的网格,其中有些格子是黑色的,现在需要求出从左上角到右下角不经过黑色格子的方案数(模 \(1 ...

随机推荐

  1. 同一个电脑配置两个Git问题

    拿到公司电脑后,正常配置gitlab,以及设置邮箱等等,可以使用公司邮箱,以及一系列设置 git config --global user.name "userName" git ...

  2. fetch上传文件报错的问题(multipart: NextPart: EOF)

    技术栈 后台: gin(golang) 前端: react+antd+dva 问题 前端这边使用fetch发送http请求的时候,后端解析formData报错: multipart: NextPart ...

  3. python数据可视化——matplotlib 用户手册入门:pyplot 画图

    参考matplotlib官方指南: https://matplotlib.org/tutorials/introductory/pyplot.html#sphx-glr-tutorials-intro ...

  4. 廖雪峰git笔记

    查看本地机子的在Git上的名字和邮箱:git config user.namegit config user.email 对所有仓库指定相同的用户名和Email地址:git config --glob ...

  5. 【MySQL 数据库】MySQL目录

    目录 [第一章]MySQL数据概述 [第二章]MySQL数据库基于Centos7.3-部署 [MySQL解惑笔记]Centos7下卸载彻底MySQL数据库 [MySQL解惑笔记]忘记MySQL数据库密 ...

  6. vue之指令篇 ps简单的对比angular

    这两天在开始vue的大型项目,发现和ng还是有许多不同,这里对比下两者的指令系统 难度系数:ng的指令难度大于vue:至少vue上暂时没发现@&=:require,compile,precom ...

  7. JS数据结构学习之排序

    在看<>这本书中关于排序这一章的时候,我试着用javascript语言来重写里面几个经典的排序方法,包括冒泡排序.快速排序.选择排序.插入排序还有希尔排序. 一.冒泡排序 冒泡排序算是排序 ...

  8. ncnblogs.com的用户体验

    你是什么样的用户, 有什么样的心理, 对cnblogs 的期望值是什么? 我是一名普通的学生,上cnblogs的期望是发表博客完成老师布置的任务. 当你第一次使用cnblogs 的功能的时候, 碰到了 ...

  9. CS小分队第一阶段冲刺站立会议(5月12日)

    昨日成果:2048整体界面效果经组员韩雪冬美化之后档次提升了好几个,我为其添加了保存并显示最高分数的功能. 遇到困难:当我想把access数据库由accdb改成mdb时,发生未知错误 ,导致数据库无法 ...

  10. Android源码项目目录结构

    src: 存放java代码 gen: 存放自动生成文件的. R.java 存放res文件夹下对应资源的id project.properties: 指定当前工程采用的开发工具包的版本 libs: 当前 ...