【NOI2018】归程(克鲁斯卡尔重构树)

题面

洛谷

题解

我在现场竟然没有把这道傻逼题给切掉,身败名裂。

因为这题就是克鲁斯卡尔重构树的模板题啊

我就直接简单的说一下把

首先发现答案就是在只经过海拔大于\(p\)的边的情况下,所有点到\(1\)号点中最短路最小的那个点。所以预处理最短路径,构建克鲁斯卡尔重构树,直接倍增+线段树就好了。

还有一种基于离线做法的方法。

我们发现离线做法只需要按照所有询问排序,

然后利用并查集按照海拔高度从小往大合并(这个其实就是克鲁斯卡尔)

这样子就可以利用可持久并查集解决。

发现并不需要回朔时间并修改,而只需要查询历史版本的值。

因为每次增加一条边只会修改两个集合,所以可以使用一个\(vector\)存下每个点每次修改之后的父亲以及当前修改的时间,那么每次询问的时候只需要在对应的点上二分查询在目标时间的集合父亲就好了,合并使用启发式合并,保证复杂度是\(O(nlogn+Qlogn)\)。

我的代码是克鲁斯卡尔重构树

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
#define ll long long
#define MAX 200200
#define pir pair<int,int>
#define mpi make_pair
#define fr(x) (x.first)
#define sd(x) (x.second)
#define lson (now<<1)
#define rson (now<<1|1)
inline int read()
{
int x=0;bool fl=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')fl=true,ch=getchar();
while(ch>='0'&&ch<='9')x=x*10+ch-48,ch=getchar();
return fl?-x:x;
}
struct Edge{int u,v,w,s;}E[MAX<<1];
bool operator<(Edge a,Edge b){return a.s>b.s;}
struct Line{int v,next,w,s;}e[MAX<<2];
int h[MAX<<1],cnt=1;
inline void Add(int u,int v,int w,int s){e[cnt]=(Line){v,h[u],w,s};h[u]=cnt++;}
int n,m,dis[MAX],Q,typ,S;
bool vis[MAX];
namespace SP
{
priority_queue<pir,vector<pir>,greater<pir> >Q;
void Dijkstra()
{
memset(vis,0,sizeof(vis));
while(!Q.empty())Q.pop();
Q.push(mpi(0,1));
while(!Q.empty())
{
pir u=Q.top();Q.pop();
if(vis[sd(u)])continue;vis[sd(u)]=true;
dis[sd(u)]=fr(u);
for(int i=h[sd(u)];i;i=e[i].next)
if(!vis[e[i].v])Q.push(mpi(dis[sd(u)]+e[i].w,e[i].v));
}
}
}
namespace MST
{
int f[MAX<<1],id;
int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
void init(){for(int i=1;i<=n<<1;++i)f[i]=i;id=n;}
void Kursual()
{
init();
for(int i=1;i<=m;++i)
{
int u=getf(E[i].u),v=getf(E[i].v);
if(u==v)continue;++id;
Add(id,u,E[i].w,E[i].s);Add(id,v,E[i].w,E[i].s);
f[u]=f[v]=id;
}
}
}
int dfn[MAX<<1],low[MAX<<1],tim,ln[MAX<<1];
int p[20][MAX<<1],s[20][MAX<<1];
void dfs(int u)
{
if(u<=n)dfn[u]=++tim,ln[tim]=u;else dfn[u]=1e9;
for(int i=1;i<20;++i)p[i][u]=p[i-1][p[i-1][u]];
for(int i=1;i<20;++i)s[i][u]=min(s[i-1][u],s[i-1][p[i-1][u]]);
for(int i=h[u];i;i=e[i].next)
{
p[0][e[i].v]=u;s[0][e[i].v]=e[i].s;
dfs(e[i].v);dfn[u]=min(dfn[u],dfn[e[i].v]);
}
low[u]=tim;
}
void init(){memset(h,0,sizeof(h));cnt=1;tim=0;}
int t[MAX<<2];
void Build(int now,int l,int r)
{
if(l==r){t[now]=dis[ln[l]];return;}
int mid=(l+r)>>1;
Build(lson,l,mid);Build(rson,mid+1,r);
t[now]=min(t[lson],t[rson]);
}
int Query(int now,int l,int r,int L,int R)
{
if(L<=l&&r<=R)return t[now];
int mid=(l+r)>>1,ret=2147483647;
if(L<=mid)ret=min(ret,Query(lson,l,mid,L,R));
if(R>mid)ret=min(ret,Query(rson,mid+1,r,L,R));
return ret;
}
int Jump(int u,int r)
{
for(int i=19;~i;--i)
if(p[i][u]&&s[i][u]>r)u=p[i][u];
return u;
}
int main()
{
freopen("return.in","r",stdin);
freopen("return.out","w",stdout);
int T=read();
while(T--)
{
init();n=read();m=read();
for(int i=1;i<=m;++i)
{
int u=read(),v=read(),l=read(),s=read();
E[i]=(Edge){u,v,l,s};
Add(E[i].u,E[i].v,E[i].w,E[i].s);
Add(E[i].v,E[i].u,E[i].w,E[i].s);
}
sort(&E[1],&E[m+1]);
SP::Dijkstra();init();
memset(p,0,sizeof(p));memset(s,0,sizeof(s));
MST::Kursual();dfs(MST::id);
Build(1,1,n);
Q=read();typ=read();S=read();
int lans=0,v,p;
while(Q--)
{
v=(read()+typ*lans-1)%n+1;
p=(read()+typ*lans)%(S+1);
v=Jump(v,p);
printf("%d\n",lans=Query(1,1,n,dfn[v],low[v]));
}
}
return 0;
}

【BZOJ5415】【NOI2018】归程(克鲁斯卡尔重构树)的更多相关文章

  1. 洛谷P4768 [NOI2018]归程(克鲁斯卡尔重构树+最短路)

    传送门 前置技能,克鲁斯卡尔重构树 我们按道路的高度建一个最大生成树,然后建好克鲁斯卡尔重构树 那么我们需要知道一颗子树内到1点距离最近是多少(除此之外到子树内任何一个点都不需要代价) 可以一开始直接 ...

  2. [note]克鲁斯卡尔重构树

    克鲁斯卡尔重构树 又叫并查集重构树 大概在NOI2018之前还是黑科技 现在?烂大街了 主要是针对图上的对边有限制的一类问题 比如每次询问一个点u不能经过边权大于w的边能走到的第k大点权是多少 也就是 ...

  3. [您有新的未分配科技点][BZOJ3545&BZOJ3551]克鲁斯卡尔重构树

    这次我们来搞一个很新奇的知识点:克鲁斯卡尔重构树.它也是一种图,是克鲁斯卡尔算法求最小生成树的升级版首先看下面一个问题:BZOJ3545 Peaks. 在Bytemountains有N座山峰,每座山峰 ...

  4. 洛谷P4197 Peaks&&克鲁斯卡尔重构树学习笔记(克鲁斯卡尔重构树+主席树)

    传送门 据说离线做法是主席树上树+启发式合并(然而我并不会) 据说bzoj上有强制在线版本只能用克鲁斯卡尔重构树,那就好好讲一下好了 这里先感谢LadyLex大佬的博客->这里 克鲁斯卡尔重构树 ...

  5. 【BZOJ4242】水壶(克鲁斯卡尔重构树,BFS)

    [BZOJ4242]水壶(克鲁斯卡尔重构树,BFS) 题面 BZOJ然而是权限题. Description JOI君所居住的IOI市以一年四季都十分炎热著称. IOI市是一个被分成纵H*横W块区域的长 ...

  6. 洛谷 P1967 货车运输(克鲁斯卡尔重构树)

    题目描述 AAA国有nn n座城市,编号从 11 1到n nn,城市之间有 mmm 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 qqq 辆货车在运输货物, 司机们想知道每辆车在不超过车 ...

  7. [模板] Kruskal算法 && 克鲁斯卡尔重构树

    克鲁斯卡尔重构树 发现没把板子放上来... 现在放一下 克鲁斯卡尔算法的正确性是利用反证法证明的. 简要地说, 就是如果不加入当前权值最小的边 \(e_1\), 那么之后加入的边和这条边会形成一个环. ...

  8. [luogu4768] [NOI2018] 归程 (Dijkstra+Kruskal重构树)

    [luogu4768] [NOI2018] 归程 (Dijkstra+Kruskal重构树) 题面 题面较长,这里就不贴了 分析 看到不能经过有积水的边,即不能经过边权小于一定值的边,我们想到了kru ...

  9. P4197 Peaks [克鲁斯卡尔重构树 + 主席树][克鲁斯卡尔重构树学习笔记]

    Problem 在\(Bytemountains\)有\(n\)座山峰,每座山峰有他的高度\(h_i\) .有些山峰之间有双向道路相连,共\(M\)条路径,每条路径有一个困难值,这个值越大表示越难走, ...

随机推荐

  1. 【JUC源码解析】ThreadPoolExecutor

    简介 ThreadPoolExecutor,线程池的基石. 概述 线程池,除了用HashSet承载一组线程做任务以外,还用BlockingQueue承载一组任务.corePoolSize和maximu ...

  2. PHP:Iterator(迭代器)接口和生成器

    迭代器 可在内部迭代自己的外部迭代器或类的接口.详情:http://php.net/manual/zh/class.iterator.php 接口摘要 Iterator extends Travers ...

  3. Openwrt之移动硬盘ext3/ext4格式化工具

    在给openwrt挂载移动硬盘的时候,最好是ext3/ext4方式,但在windows下苦于无法找到合适的工具进行格式化. 踅摸了半天,终于找到了它:MiniTool Partion  Wizard ...

  4. mysql 数据库优化之执行计划(explain)简析

    数据库优化是一个比较宽泛的概念,涵盖范围较广.大的层面涉及分布式主从.分库.分表等:小的层面包括连接池使用.复杂查询与简单查询的选择及是否在应用中做数据整合等:具体到sql语句执行效率则需调整相应查询 ...

  5. Java学习计划

    Java学习计划&书单--2018.10.13 W3C Struts教程 W3C Spring教程 W3C Hibernate教程 <深入JavaWeb技术内幕> Java Web ...

  6. 关闭会声会影2018提示UEIP.dll找不到指定模块

    最近有一些会声会影2018用户反映在关闭后弹出UEIP.dll错误,不知道该怎么办才好,针对这个问题,小编下面为大家介绍下解决方法. 原因分析 出现这个错误跟会声会影安装路径有中文字符是密切相关的,导 ...

  7. 账号被锁无法ssh登陆

    Account locked due to failed logins 方法一: 使用root用户登陆后执行: pam_tally2 --user=username --reset 方法二: user ...

  8. NO.2:自学python之路------变量类型、列表、字典

    引言 本周初步认识了库,并学习了Python中各种类型的变量和常用操作.并完成了较为完善的用户与商家购物界面设计. 正文 模块: Python有标准库和第三方库.第三方库需要安装才能使用.大量的库可以 ...

  9. BZOJ 4945 NOI2017 游戏 搜索+2-SAT

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4945 分析: 首先考虑没有x的情况,发现有一个明显的推理模型,容易看出来可以用2-SAT ...

  10. “取件帮”微信小程序宣传视频链接及内容介绍

    1.视频链接 视频上传至优酷自频道,地址链接:http://v.youku.com/v_show/id_XMzg2NTM3OTc5Ng==.html?spm=a2hzp.8253869.0.0 2.视 ...