【CF954I】Yet Another String Matching Problem(FFT)
【CF954I】Yet Another String Matching Problem(FFT)
题面
给定两个字符串\(S,T\)
求\(S\)所有长度为\(|T|\)的子串与\(T\)的距离
两个等长的串的距离定义为最少的,将某一个字符全部视作另外一个字符的次数。
\(|T|<=|S|<=10^6\),字符集大小为\(6\)
题解
考虑如何快速计算两个串的答案,从左向右扫一遍,如果对应位置上有两个字符不同,检查在并查集中是否属于同一个集合,如果不属于则答案加一,同时合并两个集合。(这个就是CF939D)
如果枚举每一个长度为\(|T|\)的子串,复杂度为\(O(|S||T|)\)。考虑优化。
将\(T\)串反转,枚举两个字符\(x,y\),将\(S\)串的\(x\)字符出现的位置对应为\(1\),\(T\)串的\(y\)字符出现的位置对应为\(1\),其他对应为\(0\),然后求两个生成函数的卷积。
假设在\(T\)的\(a\)位置和\(S\)的\(b\)位置对应有\(1\),那么它们会对\(a+b\)位置对应一个\(1\),也就是\(b+|T|-a\)位置对应一个\(1\),同时意味着在\(S\)的从这个位置开始的长度为\(|T|\)的子串中,这个位置上对应着这两个字符。
于是枚举每个开始的位置,以及任意两个字符,如果在任意位置这两个字符有对应相等的话,并查集合并即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 333333
const double Pi=acos(-1);
struct Complex{double a,b;}A[MAX],B[MAX],W[MAX];
Complex operator+(Complex a,Complex b){return (Complex){a.a+b.a,a.b+b.b};}
Complex operator-(Complex a,Complex b){return (Complex){a.a-b.a,a.b-b.b};}
Complex operator*(Complex a,Complex b){return (Complex){a.a*b.a-a.b*b.b,a.a*b.b+a.b*b.a};}
int r[MAX],N,n,m,l,eql[MAX][6][6];
char a[MAX],b[MAX];
void FFT(Complex *P,int opt)
{
for(int i=1;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
for(int p=i<<1,j=0;j<N;j+=p)
for(int k=0;k<i;++k)
{
Complex w=(Complex){W[N/i*k].a,W[N/i*k].b*opt};
Complex X=P[j+k],Y=w*P[i+j+k];
P[j+k]=X+Y;P[i+j+k]=X-Y;
}
}
int f[6];
int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
int main()
{
scanf("%s",a);scanf("%s",b);
n=strlen(a),m=strlen(b);
for(N=1;N<=(n+m);N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=1;i<N;i<<=1)
for(int k=0;k<i;++k)W[N/i*k]=(Complex){cos(k*Pi/i),sin(k*Pi/i)};
for(int i=0;i<6;++i)
for(int j=0;j<6;++j)
{
for(int k=0;k<N;++k)A[k].a=A[k].b=B[k].a=B[k].b=0;
for(int k=0;k<n;++k)A[k].a=(a[k]==i+97);
for(int k=0;k<m;++k)B[k].a=(b[m-k-1]==j+97);
FFT(A,1);FFT(B,1);
for(int k=0;k<N;++k)A[k]=A[k]*B[k];
FFT(A,-1);
for(int k=0;k<N;++k)eql[k][i][j]=(int)(A[k].a/N+0.5);
}
for(int i=m-1;i<n;++i)
{
for(int j=0;j<6;++j)f[j]=j;
for(int j=0;j<6;++j)
for(int k=0;k<6;++k)
if(eql[i][j][k])
f[getf(j)]=getf(k);
int ans=0;
for(int j=0;j<6;++j)if(getf(j)!=j)++ans;
printf("%d ",ans);
}
puts("");
return 0;
}
【CF954I】Yet Another String Matching Problem(FFT)的更多相关文章
- 【LeetCode】481. Magical String 解题报告(Python)
[LeetCode]481. Magical String 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http:/ ...
- CF954I Yet Another String Matching Problem(FFT+并查集)
给定两个字符串\(S,T\) 求\(S\)所有长度为\(|T|\)子串与\(T\)的距离 两个等长的串的距离定义为最少的,将某一个字符全部视作另外一个字符的次数. \(|T|<=|S|<= ...
- 【LeetCode】394. Decode String 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 栈 日期 题目地址:https://leetcode ...
- 【LeetCode】796. Rotate String 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...
- 【LeetCode】767. Reorganize String 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.me/ 题目地址:https://leetcode.com/problems/reorganiz ...
- 【Learning】多项式乘法与快速傅里叶变换(FFT)
简介: FFT主要运用于快速卷积,其中一个例子就是如何将两个多项式相乘,或者高精度乘高精度的操作. 显然暴搞是$O(n^2)$的复杂度,然而FFT可以将其将为$O(n lg n)$. 这看起来十分玄学 ...
- 【G】开源的分布式部署解决方案(一) - 开篇
做这个开源项目的意义是什么?(口水自问自答,不喜可略过) 从功能上来说,请参考 预告篇,因自知当时预告片没有任何含金量,所以并没有主动推送到首页,而是私下的给一些人发的. 从个人角度上来说,我希望.n ...
- 【转】python模块分析之typing(三)
[转]python模块分析之typing(三) 前言:很多人在写完代码一段时间后回过头看代码,很可能忘记了自己写的函数需要传什么参数,返回什么类型的结果,就不得不去阅读代码的具体内容,降低了阅读的速度 ...
- 【NIFI】 Apache NiFI 之 ExecuteScript处理(二)
本例介绍NiFI ExecuteScript处理器的使用,使用的脚本引擎ECMScript 接上一篇[NIFI] Apache NiFI 之 ExecuteScript处理(一) ExecuteScr ...
随机推荐
- Linux大全
Linux 基本指令介紹 一定要先學會的指令:ls, more, cd, pwd, rpm, ifconfig, find 登入與登出(開機與關機):telnet, login, exit, sh ...
- VMWARE网络配置内网与外网互ping
新增网络适配器 设置自定义VMnet0 自动桥接 NAT的网络要配置网关 我们在CentOS中打开ifcfg-ens33文件(每个系统文件名都不同,但都是以ifcfg-ens33开头的文件),进行修改 ...
- 微信小程序转换为百度小程序
据粗略预估,微信小程序和百度小程序,有至少90%以上的相似代码,而且api的参数和返回的数据都是一致的,有一些不一致的将做如下介绍:.wxml文件,改成后辍名.swan.wxss文件,改成后辍名为.c ...
- 基础的Servlet
1.认识Servlet 今天接触了Servlet,我就写了这篇Servlet的文章.首先,我们了解一下Servlet是什么: 这是百度百科的解释,我个人理解是可以用来前后端交互的一个东西,例如可以实现 ...
- NO.2:自学python之路------变量类型、列表、字典
引言 本周初步认识了库,并学习了Python中各种类型的变量和常用操作.并完成了较为完善的用户与商家购物界面设计. 正文 模块: Python有标准库和第三方库.第三方库需要安装才能使用.大量的库可以 ...
- KETTLE监控
kettle单实例环境下自身没有监控工具,但在集群下自带了监控工具. 一.集群自带的监控 kettle自带的集群监控工具可以监控转换的执行情况. 配置好集群后,打开浏览器:输入http://local ...
- underscore.js源码解析(三)
最近工作比较忙,做不到每周两篇了,周末赶着写吧,上篇我针对一些方法进行了分析,今天继续. 没看过前两篇的可以猛戳这里: underscore.js源码解析(一) underscore.js源码解析(二 ...
- Scrum立会报告+燃尽图(十月二十八日总第十九次)
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2288 项目地址:https://git.coding.net/zhang ...
- Thunder团队Final周贡献分分配结果
小组名称:Thunder 项目名称:爱阅app 组长:王航 成员:李传康.翟宇豪.邹双黛.苗威.宋雨.胡佑蓉.杨梓瑞 分配规则 则1:基础分,拿出总分的20%(8分)进行均分,剩下的80%(32分)用 ...
- 四则运算4 WEB(结对开发)
在第三次实验的基础上,teacher又对此提出了新的要求,实现网页版或安卓的四则运算. 结对开发的伙伴: 博客名:Mr.缪 姓名:缪金敏 链接:http://www.cnblogs.com/miaoj ...