【CF954I】Yet Another String Matching Problem(FFT)

题面

给定两个字符串\(S,T\)

求\(S\)所有长度为\(|T|\)的子串与\(T\)的距离

两个等长的串的距离定义为最少的,将某一个字符全部视作另外一个字符的次数。

\(|T|<=|S|<=10^6\),字符集大小为\(6\)

题解

考虑如何快速计算两个串的答案,从左向右扫一遍,如果对应位置上有两个字符不同,检查在并查集中是否属于同一个集合,如果不属于则答案加一,同时合并两个集合。(这个就是CF939D)

如果枚举每一个长度为\(|T|\)的子串,复杂度为\(O(|S||T|)\)。考虑优化。

将\(T\)串反转,枚举两个字符\(x,y\),将\(S\)串的\(x\)字符出现的位置对应为\(1\),\(T\)串的\(y\)字符出现的位置对应为\(1\),其他对应为\(0\),然后求两个生成函数的卷积。

假设在\(T\)的\(a\)位置和\(S\)的\(b\)位置对应有\(1\),那么它们会对\(a+b\)位置对应一个\(1\),也就是\(b+|T|-a\)位置对应一个\(1\),同时意味着在\(S\)的从这个位置开始的长度为\(|T|\)的子串中,这个位置上对应着这两个字符。

于是枚举每个开始的位置,以及任意两个字符,如果在任意位置这两个字符有对应相等的话,并查集合并即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 333333
const double Pi=acos(-1);
struct Complex{double a,b;}A[MAX],B[MAX],W[MAX];
Complex operator+(Complex a,Complex b){return (Complex){a.a+b.a,a.b+b.b};}
Complex operator-(Complex a,Complex b){return (Complex){a.a-b.a,a.b-b.b};}
Complex operator*(Complex a,Complex b){return (Complex){a.a*b.a-a.b*b.b,a.a*b.b+a.b*b.a};}
int r[MAX],N,n,m,l,eql[MAX][6][6];
char a[MAX],b[MAX];
void FFT(Complex *P,int opt)
{
for(int i=1;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
for(int p=i<<1,j=0;j<N;j+=p)
for(int k=0;k<i;++k)
{
Complex w=(Complex){W[N/i*k].a,W[N/i*k].b*opt};
Complex X=P[j+k],Y=w*P[i+j+k];
P[j+k]=X+Y;P[i+j+k]=X-Y;
}
}
int f[6];
int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
int main()
{
scanf("%s",a);scanf("%s",b);
n=strlen(a),m=strlen(b);
for(N=1;N<=(n+m);N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=1;i<N;i<<=1)
for(int k=0;k<i;++k)W[N/i*k]=(Complex){cos(k*Pi/i),sin(k*Pi/i)};
for(int i=0;i<6;++i)
for(int j=0;j<6;++j)
{
for(int k=0;k<N;++k)A[k].a=A[k].b=B[k].a=B[k].b=0;
for(int k=0;k<n;++k)A[k].a=(a[k]==i+97);
for(int k=0;k<m;++k)B[k].a=(b[m-k-1]==j+97);
FFT(A,1);FFT(B,1);
for(int k=0;k<N;++k)A[k]=A[k]*B[k];
FFT(A,-1);
for(int k=0;k<N;++k)eql[k][i][j]=(int)(A[k].a/N+0.5);
}
for(int i=m-1;i<n;++i)
{
for(int j=0;j<6;++j)f[j]=j;
for(int j=0;j<6;++j)
for(int k=0;k<6;++k)
if(eql[i][j][k])
f[getf(j)]=getf(k);
int ans=0;
for(int j=0;j<6;++j)if(getf(j)!=j)++ans;
printf("%d ",ans);
}
puts("");
return 0;
}

【CF954I】Yet Another String Matching Problem(FFT)的更多相关文章

  1. 【LeetCode】481. Magical String 解题报告(Python)

    [LeetCode]481. Magical String 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http:/ ...

  2. CF954I Yet Another String Matching Problem(FFT+并查集)

    给定两个字符串\(S,T\) 求\(S\)所有长度为\(|T|\)子串与\(T\)的距离 两个等长的串的距离定义为最少的,将某一个字符全部视作另外一个字符的次数. \(|T|<=|S|<= ...

  3. 【LeetCode】394. Decode String 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 栈 日期 题目地址:https://leetcode ...

  4. 【LeetCode】796. Rotate String 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  5. 【LeetCode】767. Reorganize String 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.me/ 题目地址:https://leetcode.com/problems/reorganiz ...

  6. 【Learning】多项式乘法与快速傅里叶变换(FFT)

    简介: FFT主要运用于快速卷积,其中一个例子就是如何将两个多项式相乘,或者高精度乘高精度的操作. 显然暴搞是$O(n^2)$的复杂度,然而FFT可以将其将为$O(n lg n)$. 这看起来十分玄学 ...

  7. 【G】开源的分布式部署解决方案(一) - 开篇

    做这个开源项目的意义是什么?(口水自问自答,不喜可略过) 从功能上来说,请参考 预告篇,因自知当时预告片没有任何含金量,所以并没有主动推送到首页,而是私下的给一些人发的. 从个人角度上来说,我希望.n ...

  8. 【转】python模块分析之typing(三)

    [转]python模块分析之typing(三) 前言:很多人在写完代码一段时间后回过头看代码,很可能忘记了自己写的函数需要传什么参数,返回什么类型的结果,就不得不去阅读代码的具体内容,降低了阅读的速度 ...

  9. 【NIFI】 Apache NiFI 之 ExecuteScript处理(二)

    本例介绍NiFI ExecuteScript处理器的使用,使用的脚本引擎ECMScript 接上一篇[NIFI] Apache NiFI 之 ExecuteScript处理(一) ExecuteScr ...

随机推荐

  1. 理解学习Springboot(一)

    Springboot有何优势呢,网上一大推,这里就不写了. 一.配置maven 1.在maven官网下载maven,http://maven.apache.org/download.cgi 2.将下载 ...

  2. 配置文件语言之yaml

    一. Yaml YAML 是一种简洁的非标记语言.YAML以数据为中心,使用空白,缩进,分行组织数据,从而使得表示更加简洁易读. 由于实现简单,解析成本很低,YAML特别适合在脚本语言中使用.列一下现 ...

  3. docker应用容器化准则—12 factor

    在云的时代,越来越多的传统应用需要迁移到云环境下,新应用也要求能适应云的架构设计和开发模式.而12-factor提供了一套标准的云原生应用开发的最佳原则. 在容器云项目中应用容器化主要参考12-Fac ...

  4. 梯度消失&&梯度爆炸

    转载自: https://blog.csdn.net/qq_25737169/article/details/78847691 前言 本文主要深入介绍深度学习中的梯度消失和梯度爆炸的问题以及解决方案. ...

  5. [redis] linux下哨兵篇(3)

    一.前言1.为何部署sentinel哨兵前文redis主从架构中,当主服务故障时,需要手动将从服务切换为主服务,sentinel服务就是将这个过程自动化.主要功能有:1)不时监控主从服务正常运行2)可 ...

  6. rest_framework组件

    认证组件 局部认证 在需要认证的视图类里加上authentication_classes = [认证组件1类名,认证组件2类名....] 示例如下: seralizers.py from rest_f ...

  7. 检查Linux服务器性能的关键十条命令

    检查Linux服务器性能的关键十条命令 概述 通过执行以下命令,可以在1分钟内对系统资源使用情况有个大致的了解. uptime dmesg | tail vmstat 1 mpstat -P ALL ...

  8. Scrum立会报告+燃尽图(Beta阶段第二周第一次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2409 项目地址:https://coding.net/u/wuyy694 ...

  9. Macbook Pro开机黑屏了。

    问题描述:点了appstore的更新,然后重启黑屏.(说明:黑屏是屏幕没亮:灰屏是屏幕亮了是灰黑色的.) 黑屏问题大,灰屏问题小. 开机按option没反应的跳到步骤四 一.数据 苹果电脑黑屏了,想搞 ...

  10. Spring学习(四)—— java动态代理(JDK和cglib)

    JAVA的动态代理 代理模式 代理模式是常用的java设计模式,他 的特征是代理类与委托类有同样的接口,代理类主要负责为委托类预处理消息.过滤消息.把消息转发给委托类,以及事后处理消息等.代理类与委托 ...