[CLPR] 用于加速训练神经网络的二阶方法
本文翻译自: http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi
所有二阶技术都有同一个目标: 提高BP收敛的速度. 它们都使用同一种基本的方法 - 分别调整每个权值. 比如, 对于每个权值设置不同的学习速率.
在文章 Efficient BackProp, 中, LeCun博士提出了一种被称为"随机对角Levenberg-Marquardt方法"的二阶技术. 他把这种技术和一种"精确优化的随机梯度算法"进行了对比, 后者是一种不依赖于二阶技术的算法, 但对于每个权值都使用了不同的学习速率eta. 根据他的比较, "(随机对角LM)额外引入的误差是可以忽略的, 但训练速度上 - 凭感觉 - 却比随机梯度算法快了3倍." (文章的35页).
我们需要一种二阶方法来加速训练. 不使用这些方法的结果是我们的收敛会非常缓慢.
Simard博士, 在他的文章"Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis,"中提到, 由于想让算法尽量简洁, 所以没有使用二阶技术. 他同样承认他需要上百次循环才能收敛.(我个人认为接近1000)
我们再来看看MNIST数据库, 每一个循环需要60,000次BP过程, 在我的电脑上每个循环需要大概40分钟. 我没有耐心(也没有自信我的代码毫无错误)来等待上千次循环. 同样地, 不像LeCun博士, 我也没有能力去设计一个"精确优化的随机梯度算法". 所以, 由于随机对角LM方法会快3倍, 我的NN实现了这一方法.
我不会详细分析数学或这个算法的代码. 它本质上已经和标准的BP不太一样了. 使用这个技术, 我可以在20~25次循环内收敛到一个满意的结果. 这样有两个好处: 第一, 它证明了我的代码是正确的, 因为LeCun博士的收敛次数也是20左右; 第二, 40分钟一次循环的情况下, 我只需要14~16个小时即可, 这可以接受.
如果你想要仔细分析这一段的代码, 你可以查看CMNistDoc::CalculateHessian()和NeuralNetwork::BackpropagateSecondDervatives(). 另外, 应当注意NNWeight包含一个double成员, 这在前述的代码中没有显式注明. 这个成员名为diagHessian, 它存储的是根据LeCun博士的算法计算出的曲率. 基本上, 当调用CMNistDoc::CalculateHessian()时, 500个MNIST的模式就会被随机挑选出来. 对于每个模式, NeuralNetwork::BackpropagateSecondDervatives()会计算出每个权值的Hessian, 这个数字会被收集到diagHessian中. 在500个模式都运行结束后, diagHessian中的值都被除以500, 从而为每个权值赋予一个独特的diagHessian值. 在实际的BP过程中, diagHessian值被用来缩放当前的学习速率, 从而在曲率较高的区域, 学习速率降低, 反之升高.
[CLPR] 用于加速训练神经网络的二阶方法的更多相关文章
- AI佳作解读系列(一)——深度学习模型训练痛点及解决方法
1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公 ...
- ReLeQ:一种自动强化学习的神经网络深度量化方法
ReLeQ:一种自动强化学习的神经网络深度量化方法 ReLeQ:一种自动强化学习的神经网络深度量化方法ReLeQ: An Automatic Reinforcement Learning Ap ...
- stanford coursera 机器学习编程作业 exercise4--使用BP算法训练神经网络以识别阿拉伯数字(0-9)
在这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上. 训练数据集(training set)如下:一共有5000个训练实例(trai ...
- 机器学习入门15 - 训练神经网络 (Training Neural Networks)
原文链接:https://developers.google.com/machine-learning/crash-course/training-neural-networks/ 反向传播算法是最常 ...
- Gradient Centralization: 简单的梯度中心化,一行代码加速训练并提升泛化能力 | ECCV 2020 Oral
梯度中心化GC对权值梯度进行零均值化,能够使得网络的训练更加稳定,并且能提高网络的泛化能力,算法思路简单,论文的理论分析十分充分,能够很好地解释GC的作用原理 来源:晓飞的算法工程笔记 公众号 论 ...
- 目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练
将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练. import xml.etree.ElementTree as ET import numpy as ...
- 怎么选取训练神经网络时的Batch size?
怎么选取训练神经网络时的Batch size? - 知乎 https://www.zhihu.com/question/61607442 深度学习中的batch的大小对学习效果有何影响? - 知乎 h ...
- 使用Google Colab训练神经网络(二)
Colaboratory 是一个 Google 研究项目,旨在帮助传播机器学习培训和研究成果.它是一个 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行.Colaborat ...
- pytorch1.0批训练神经网络
pytorch1.0批训练神经网络 import torch import torch.utils.data as Data # Torch 中提供了一种帮助整理数据结构的工具, 叫做 DataLoa ...
随机推荐
- IP地址与MAC地址
作者:知乎用户链接:https://www.zhihu.com/question/21546408/answer/28155896来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...
- poj1942 Paths on a Grid(无mod大组合数)
poj1942 Paths on a Grid 题意:给定一个长m高n$(n,m \in unsigned 32-bit)$的矩形,问有几种走法.$n=m=0$时终止. 显然的$C(m+n,n)$ 但 ...
- BZOJ2209: [Jsoi2011]括号序列
传送门 splay练习. 考虑把括号序列转化成类似于区间最大/最小值的情况. 显然我们可以知道括号序列消完的情况肯定是$a$个)和$b$个(,那么把这些括号全部合法化的代价显然就是$\frac{a+1 ...
- double保存小数点后两位
double getRound(double a){ return (int(a * 100 + 0.5)) / 100.0; };//利用的是强制转换
- 如何在 OSX 中使用多个JDK版本
升级macbook小白的硬盘成SSD后,重新安装了系统和JDK8,但是启动eclipse还是报告需要安装JDK6,于是也按照提示安装了Apple JDK6,这导致系统中有两个JDK,一个是Oracle ...
- POJ 1034 The dog task(二分图匹配)
http://poj.org/problem?id=1034 题意: 猎人和狗一起出去,狗的速度是猎人的两倍,给出猎人的路径坐标,除了这些坐标外,地图上还有一些有趣的点,而我们的狗,就是要尽量去多的有 ...
- 配置github的SSH key及GitHub项目上传方式一——使用终端命令行
GitHub是一个开源的大仓库,我们经常从github上下载项目进行学习和研究,下面是一个完整的步骤——往GitHub上传一个新项目. 一.注册GitHub账号 1.注册GitHub账号,地址:htt ...
- IntelliJ IDEA自定义类和方法注解模板
现在Java开发主流工具应该是Intelij Idea 方便快捷. 本文将主要介绍如何用Intelij Idea配置类及方法的注释模板提高代码注释效率 1. 配置类注解模板 找到配置页面 File - ...
- Hive 建外链表到 Hbase(分内部表、外部表两种方式)
一. Hive 建内部表,链到hbase :特点:Hive drop表后,Hbase 表同步删除 drop table if exists hbase_kimbo_test1;CREATE TABLE ...
- 剑指offer面试题19 二叉树的镜像
题目描述 操作给定的二叉树,将其变换为源二叉树的镜像. 输入描述 二叉树的镜像定义:源二叉树 8 / \ 6 10 / \ / \ 5 7 9 11 镜像二叉树 8 / \ 10 6 / \ / \ ...