[CLPR] 用于加速训练神经网络的二阶方法
本文翻译自: http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi
所有二阶技术都有同一个目标: 提高BP收敛的速度. 它们都使用同一种基本的方法 - 分别调整每个权值. 比如, 对于每个权值设置不同的学习速率.
在文章 Efficient BackProp, 中, LeCun博士提出了一种被称为"随机对角Levenberg-Marquardt方法"的二阶技术. 他把这种技术和一种"精确优化的随机梯度算法"进行了对比, 后者是一种不依赖于二阶技术的算法, 但对于每个权值都使用了不同的学习速率eta. 根据他的比较, "(随机对角LM)额外引入的误差是可以忽略的, 但训练速度上 - 凭感觉 - 却比随机梯度算法快了3倍." (文章的35页).
我们需要一种二阶方法来加速训练. 不使用这些方法的结果是我们的收敛会非常缓慢.
Simard博士, 在他的文章"Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis,"中提到, 由于想让算法尽量简洁, 所以没有使用二阶技术. 他同样承认他需要上百次循环才能收敛.(我个人认为接近1000)
我们再来看看MNIST数据库, 每一个循环需要60,000次BP过程, 在我的电脑上每个循环需要大概40分钟. 我没有耐心(也没有自信我的代码毫无错误)来等待上千次循环. 同样地, 不像LeCun博士, 我也没有能力去设计一个"精确优化的随机梯度算法". 所以, 由于随机对角LM方法会快3倍, 我的NN实现了这一方法.
我不会详细分析数学或这个算法的代码. 它本质上已经和标准的BP不太一样了. 使用这个技术, 我可以在20~25次循环内收敛到一个满意的结果. 这样有两个好处: 第一, 它证明了我的代码是正确的, 因为LeCun博士的收敛次数也是20左右; 第二, 40分钟一次循环的情况下, 我只需要14~16个小时即可, 这可以接受.
如果你想要仔细分析这一段的代码, 你可以查看CMNistDoc::CalculateHessian()和NeuralNetwork::BackpropagateSecondDervatives(). 另外, 应当注意NNWeight包含一个double成员, 这在前述的代码中没有显式注明. 这个成员名为diagHessian, 它存储的是根据LeCun博士的算法计算出的曲率. 基本上, 当调用CMNistDoc::CalculateHessian()时, 500个MNIST的模式就会被随机挑选出来. 对于每个模式, NeuralNetwork::BackpropagateSecondDervatives()会计算出每个权值的Hessian, 这个数字会被收集到diagHessian中. 在500个模式都运行结束后, diagHessian中的值都被除以500, 从而为每个权值赋予一个独特的diagHessian值. 在实际的BP过程中, diagHessian值被用来缩放当前的学习速率, 从而在曲率较高的区域, 学习速率降低, 反之升高.
[CLPR] 用于加速训练神经网络的二阶方法的更多相关文章
- AI佳作解读系列(一)——深度学习模型训练痛点及解决方法
1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公 ...
- ReLeQ:一种自动强化学习的神经网络深度量化方法
ReLeQ:一种自动强化学习的神经网络深度量化方法 ReLeQ:一种自动强化学习的神经网络深度量化方法ReLeQ: An Automatic Reinforcement Learning Ap ...
- stanford coursera 机器学习编程作业 exercise4--使用BP算法训练神经网络以识别阿拉伯数字(0-9)
在这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上. 训练数据集(training set)如下:一共有5000个训练实例(trai ...
- 机器学习入门15 - 训练神经网络 (Training Neural Networks)
原文链接:https://developers.google.com/machine-learning/crash-course/training-neural-networks/ 反向传播算法是最常 ...
- Gradient Centralization: 简单的梯度中心化,一行代码加速训练并提升泛化能力 | ECCV 2020 Oral
梯度中心化GC对权值梯度进行零均值化,能够使得网络的训练更加稳定,并且能提高网络的泛化能力,算法思路简单,论文的理论分析十分充分,能够很好地解释GC的作用原理 来源:晓飞的算法工程笔记 公众号 论 ...
- 目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练
将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练. import xml.etree.ElementTree as ET import numpy as ...
- 怎么选取训练神经网络时的Batch size?
怎么选取训练神经网络时的Batch size? - 知乎 https://www.zhihu.com/question/61607442 深度学习中的batch的大小对学习效果有何影响? - 知乎 h ...
- 使用Google Colab训练神经网络(二)
Colaboratory 是一个 Google 研究项目,旨在帮助传播机器学习培训和研究成果.它是一个 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行.Colaborat ...
- pytorch1.0批训练神经网络
pytorch1.0批训练神经网络 import torch import torch.utils.data as Data # Torch 中提供了一种帮助整理数据结构的工具, 叫做 DataLoa ...
随机推荐
- web实现负载均衡的几种实现方式
摘要: 负载均衡(Load Balance)是集群技术(Cluster)的一种应用.负载均衡可以将工作任务分摊到多个处理单元,从而提高并发处理能力.目前最常见的负载均衡应用是Web负载均衡.根据实现的 ...
- Vue学习笔记之Vue的使用
0x00 安装 对于新手来说,强烈建议大家使用<script>引入 0x01 引入vue.js文件 我们能发现,引入vue.js文件之后,Vue被注册为一个全局的变量,它是一个构造函数. ...
- 20145318《网络对抗》逆向及Bof基础
实践目标 本次实践的对象是一个名为pwn1的linux可执行文件. 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何用户输入的字符串. 该程序同时包含另一个代码片段,getShe ...
- CSS3之嵌入Web字体
之前如果想在自己的网站使用某些好看的字体,总是迫不得已得在PS里先把字体图片做好.虽然这样做也能达到我们想要的效果,但是这样就增加了HTTP请求(如果在多处使用的话),即使合并所有图片,也不好管理,灵 ...
- 强连通分量(Korasaju & Tarjan)学习笔记
好久以前学过的东西...现在已经全忘了 很多图论问题需要用到强连通分量,还是很有必要重新学一遍的 强连通分量(Strongly Connected Component / SCC) 指在一个有向图中, ...
- Thinking in java note1
Part information collecting from http://blog.csdn.net/leonliu06/article/details/78638841 1. 如果已经定义了一 ...
- install_github安装错误解决方法
install.packages('devtools')library(devtools)install_github('hdng/clonevol') Installation failed: Ti ...
- shell 按行读取文件
#!/bin/bash count= //赋值语句,不加空格 cat test | while read line //cat 命令的输出作为read命令的输入,read读到的值放在line中 do ...
- 使用方法拦截机制在不修改原逻辑基础上为 spring MVC 工程添加 Redis 缓存
首先,相关文件:链接: https://pan.baidu.com/s/1H-D2M4RfXWnKzNLmsbqiQQ 密码: 5dzk 文件说明: redis-2.4.5-win32-win64.z ...
- The web application you are attempting to access on this web server is currently unavailable.......
今天去服务器安装了个.net 4.0 framework(原本有1.0和2.0的),配置好站点后,选择版本为4.0,访问出错,错误代码如下 Server Application Unavailable ...