LOJ2229. 「BJOI2014」想法(随机化)
题目链接
题解
评分标准提示我们可以使用随机化算法。
首先,我们为每一道编号在 \([1, m]\) 以内的题目(这些题目也对应了 \(m\) 个初始的想法)赋一个 \([0, d]\) 以内的随机权值。接下来,我们可以通过 \(O(n)\) 的递推来求出每一道编号在 \((m, n]\) 以内的题目所包含的所有想法对应权值的最小值。记第 \(i(i > m)\) 道题目包含 \(x_i\) 个不同的想法,且这些想法对应权值的最小值为 \(w_i\),那么有 \(w_i\) 的期望值为 \(\frac{d}{x_i + 1}\)。
我们试着证明一下上述结论。在此之前,我们先思考一个值域较小但更为普遍的问题:在 \([0, 1]\) 内选择 \(x\) 个随机变量(变量之间互相独立,且在 \([0, 1]\) 内均匀随机),求选出的这 \(x\) 个变量中第 \(k\) 小值的期望。
我们将该问题做一个转化:求选出的这 \(x\) 个变量中第 \(k\) 小值的期望,等价于求再在 \([0, 1]\) 内选择一个随机变量,求选出的这个变量小于之前选出的 \(x\) 个变量中第 \(k\) 小值的概率。
经过转化之后的问题显然就很好做了。我们考虑按照数值从小到大给这 \(x + 1\) 个变量赋上排名。忽略变量相等的情况,那么这 \(x + 1\) 个变量的排名构成了一个 \(x + 1\) 的排列,且显然,产生各个排列的概率是相同的。\(x + 1\) 的全排列数为 \((x + 1)!\),我们考虑用合法的排列数除以全排列数来求概率,这样,问题转化为了求共有多少种 \(x + 1\) 的排列满足排列的最后一个位置的值不超过 \(k\)。显然合法的排列总数为 \(k \times x!\)。因此概率即为 \(\frac{k \times x!}{(x + 1)!} = \frac{k}{x + 1}\),那么可以得到在 \([0, 1]\) 内选出的 \(x\) 个随机变量中第 \(k\) 小值的期望也为 \(\frac{k}{x + 1}\)。
这个结论其实被直接放在了[ZJOI2015]地震后的幻想乡一题的提示中。
这样,当随机权值的值域为 \([0, d]\) 时,选出 \(x\) 个随机权值的最小值 \(w\) 的期望即为 \(\frac{1}{x + 1} \times d\)。若求得 \(w\) 的期望 \(E\),那么可得 \(x = \frac{d}{E} - 1\)。
对于第 \(i\) 个想法,我们可以通过多次随机化求平均数来得到 \(w_i\) 的期望的近似值。设随机化的次数为 \(T\),那么总时间复杂度为 \(O(Tn)\)。
代码
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int n, m, from[N][2], a[N];
double answer[N];
int main() {
scanf("%d%d", &n, &m);
int M = 100000000 / n;
for (int i = m + 1; i <= n; ++i) {
scanf("%d%d", &from[i][0], &from[i][1]);
}
for (int tt = 1; tt <= M; ++tt) {
for (int i = 1; i <= m; ++i) {
a[i] = rand();
}
for (int i = m + 1; i <= n; ++i) {
a[i] = min(a[from[i][0]], a[from[i][1]]);
answer[i] += (double) a[i] / M;
}
}
for (int i = m + 1; i <= n; ++i) {
answer[i] = RAND_MAX / answer[i] - 1;
printf("%.0lf\n", answer[i]);
}
return 0;
}
LOJ2229. 「BJOI2014」想法(随机化)的更多相关文章
- LOJ#2230. 「BJOI2014」大融合
LOJ#2230. 「BJOI2014」大融合 题目描述 小强要在$N$个孤立的星球上建立起一套通信系统.这套通信系统就是连接$N$个点的一个树.这个树的边是一条一条添加上去的. 在某个时刻,一条边的 ...
- 【LOJ】#2230. 「BJOI2014」大融合
题解 我现在真是太特么老年了 一写数据结构就颓废,难受 这题就是用lct维护子树 ???lct怎么维护子树 这样想,我们给每个点记录虚边所在的子树大小,只发生在Access和link的时候 这样的话我 ...
- loj2230 「BJOI2014」大融合
LCT裸题 我LCT学傻了这题明显可以树剖我不会树剖了 本来的siz是Splay上的子树和,并没有什么用. 所以每个点维护虚子树和和子树和 虚子树和即虚边连接的子树和,且只有在access和link操 ...
- Loj 2230. 「BJOI2014」大融合 (LCT 维护子树信息)
链接:https://loj.ac/problem/2230 思路: 设立siz数组保存虚点信息,sum表示总信息 维护子树信息link操作和access操作需要进行一些改动 可参考博客:https: ...
- loj2341「WC2018」即时战略(随机化,LCT/动态点分治)
loj2341「WC2018」即时战略(随机化,LCT/动态点分治) loj Luogu 题解时间 对于 $ datatype = 3 $ 的数据,explore操作次数只有 $ n+log n $ ...
- loj3161「NOI2019」I 君的探险(随机化,整体二分)
loj3161「NOI2019」I 君的探险(随机化,整体二分) loj Luogu 题解时间 对于 $ N \le 500 $ 的点,毫无疑问可以直接 $ O(n^2) $ 暴力询问解决. 考虑看起 ...
- 「译」JUnit 5 系列:扩展模型(Extension Model)
原文地址:http://blog.codefx.org/design/architecture/junit-5-extension-model/ 原文日期:11, Apr, 2016 译文首发:Lin ...
- 「2014-3-18」multi-pattern string match using aho-corasick
我是擅(倾)长(向)把一篇文章写成杂文的.毕竟,写博客记录生活点滴,比不得发 paper,要求字斟句酌八股结构到位:风格偏杂文一点,也是没人拒稿的.这么说来,arxiv 就好比是 paper 世界的博 ...
- LOJ_2305_「NOI2017」游戏 _2-sat
LOJ_2305_「NOI2017」游戏 _2-sat 题意: 给你一个长度为n的字符串S,其中第i个字符为a表示第i个地图只能用B,C两种赛车,为b表示第i个地图只能用A,C两种赛车,为c表示第i个 ...
随机推荐
- MySQL redo log及recover过程浅析
写在前面:作者水平有限,欢迎不吝赐教,一切以最新源码为准. InnoDB redo log 首先介绍下Innodb redo log是什么,为什么需要记录redo log,以及redo log的作用都 ...
- UVa 1614 Hell on the Markets (贪心+推理)
题意:给定一个长度为 n 的序列,满足 1 <= ai <= i,要求确实每一个的符号,使得它们和为0. 析:首先这一个贪心的题目,再首先不是我想出来的,是我猜的,但并不知道为什么,然后在 ...
- ZOJ3696 Alien's Organ 2017-04-06 23:16 51人阅读 评论(0) 收藏
Alien's Organ Time Limit: 2 Seconds Memory Limit: 65536 KB There's an alien whose name is Marja ...
- Python学习-7.Python的循环语句-for语句
Python中循环可以使用for语句来实现 list = ['Tom','Lucy','Mary'] for name in list: print(name) 则将会依次输出Tom Lucy Mar ...
- NTLM认证协议及SSPI的NTLM实现
没错,NTLM就是你听说过的那个NTLM.是微软应用最广泛的认证协议之一. NTLM是NT LAN Manager的缩写,这也说明了协议的来源.NTLM 是 Windows NT 早期版本的标准安全协 ...
- CodeIgniter使用中写的一些文章
CI的captcha替代类库: http://www.ifixedbug.com/posts/codeigniter-captcha-library 原生的captcha不是太好用,自己组装一个吧. ...
- 基于docker创建的Jenkins,settings.xml文件放在哪里
如果运行容器时挂载目录如下 启动容器 docker run -itd -p 8080:8080 -p 50000:50000 --name jenkins --privileged=true --r ...
- Kindeditor编辑器上传附件,自动获取文件名显示。
大部分在线编辑器在上传附件之后都是会以路径的形式显示出来很不友好.类似这样..怎么样显示成这样用户上传的原始文件名呢.就是这样.是不是看着很友好. kindeditor编辑器上传文件是已插件的形式调用 ...
- 【VS2015】故障修复之dep6100,dep6200
问题描述:把uwp程序往手机上(或者往模拟器上)部署时,vs ide提示我错误信息dep6100和dep6200,报告说“连接不到设备”. 这可把我愁坏了,各种方法都不行,最后发现问题出在Hyper- ...
- Android 中 LayoutParams 的用法
一个控件应当使用它的父控件的 LayoutParams 类型.因此,一个 TableVow 应该使用 TableLayout.Params . 所以,以一个 TableRow 为例: TableRow ...