Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.
In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentagonal number, I can only wonder if we have to deal with septagonal numbers in Problem 46. Anyway the problem reads
Pentagonal numbers are generated by the formula, Pn=n(3n-1)/2. The first ten pentagonal numbers are:
1, 5, 12, 22, 35, 51, 70, 92, 117, 145, …
It can be seen that P4 + P7 = 22 + 70 = 92 = P8. However, their difference, 70 – 22 = 48, is not pentagonal.
Find the pair of pentagonal numbers, Pj and Pk, for which their sum and difference is pentagonal and D = |Pk – Pj| is minimised; what is the value of D?
I have found a solution which I will present to you in just a few lines, but I must admit that I haven’t been able to justify why it is the right solution it gives us. The solution I have made just finds a solution to the problem which happens to the right solution.
I did not want to generate a list of pentagonal numbers, so I wanted to make a small function which checks if a given number is pentagonal by checking if the inverse function yields an integer, just like in the solution to Problem 42. We could rather easily calculate the inverse function as we did with the inverse function for triangular numbers, or we can cheat and peak at the pentagonal number entry at Wikipedia.
The inverse function is
That enables us to make a C# function that checks if a number is pentagonal
1
2
3
4
|
private bool isPentagonal( int number) { double penTest = (Math.Sqrt(1 + 24 * number) + 1.0) / 6.0; return penTest == (( int )penTest); } |
Once we have this crucial function we can make two nested loops to check pentagonal numbers until we find two where the sum and difference are pentagonal as well. I am frustrated since I can’t figure out why this one is the first. I can prove that it is indeed minimal by testing other numbers until the difference of two numbers reach the result of this problem. However I haven’t done that.
The outer loop of the algorithm counts upwards generating and the inner loop counting downwards testing all pentagonal numbers less than the one generated by the outer loop. The code looks like
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
int result = 0; bool notFound = true ; int i = 1; while (notFound) { i++; int n = i * (3 * i - 1) / 2; for ( int j = i-1; j > 0; j--) { int m = j * (3 * j - 1) / 2; if (isPentagonal(n - m) && isPentagonal(n + m)) { result = n-m; notFound = false ; break ; } } } |
and gives the result
1
2
3
|
k = 2167, j = 1020 The value of D is 5482660 Solution took 35 ms |
Wrapping up
I can see that many other people also can’t give the definitive answer to why the result is correct. If you understand the problem better than I do, please let me know exactly why I find the right solution.
You can as usual find the source code for the problem here.
Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.的更多相关文章
- Project Euler 44 Sub-string divisibility( 二分 )
题意:五边形数由公式Pn=n(3n−1)/2生成,在所有和差均为五边形数的五边形数对Pj和Pk中,找出使D = |Pk − Pj|最小的一对:此时D的值是多少? 思路:二分找和差 /********* ...
- Python练习题 048:Project Euler 021:10000以内所有亲和数之和
本题来自 Project Euler 第21题:https://projecteuler.net/problem=21 ''' Project Euler: Problem 21: Amicable ...
- project euler 169
project euler 169 题目链接:https://projecteuler.net/problem=169 参考题解:http://tieba.baidu.com/p/2738022069 ...
- Python练习题 039:Project Euler 011:网格中4个数字的最大乘积
本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...
- Python练习题 033:Project Euler 005:最小公倍数
本题来自 Project Euler 第5题:https://projecteuler.net/problem=5 # Project Euler: Problem 5: Smallest multi ...
- [project euler] program 4
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...
- Python练习题 029:Project Euler 001:3和5的倍数
开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...
- Project Euler 9
题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个 ...
- 【Project Euler 8】Largest product in a series
题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × ...
随机推荐
- Oracle 创建表空间和用户
创建用户: 建立表空间和用户的步骤: 用户 建立:create user 用户名 identified by "密码"; 授权:grant create session to 用户 ...
- 剑指offer(1-10)编程题
二维数组中的查找 替换空格 从尾到头打印链表 重建二叉树 用两个栈实现队列 旋转数组的最小数字 斐波那契数列 跳台阶 变态跳台阶 矩形覆盖 1 .在一个二维数组中,每一行都按照从左到右递增的顺序排序, ...
- 初识DataGridView 表格数据控件
DataGridView控件提供了一种强大而灵活的以表格形式显示数据的方式,用户可以使用DataGridView控件来显示少量数据的只读视图,也可以对其进行缩放以显示特大数据集的可编辑视图. 扩展Da ...
- Docker学习之Docker镜像基本使用
Docker学习之Docker镜像基本使用 获取镜像 命令格式:docker pull [选项] [Docker Registry 地址[:端口号]/]仓库名[:标签] 例如: docker pull ...
- [C语言] 数据结构-预备知识指针
所有的伟大源于一个勇敢的开始 数据结构预备知识 指针 1.指针:是C语言的灵魂,指针=地址 地址:内存单元的编号 指针变量:存放内存单元地址的变量 int *p;//p是指针变量,int *表示该p变 ...
- 多线程-定时器Timer
2019-04-1218:03:32 package 多线程.定时器Timer_重要; import java.util.Timer; import java.util.TimerTask; publ ...
- 腾讯企业邮箱报错 "smtp.exmail.qq.com"port 465, isSSL false
一.报错 "smtp.exmail.qq.com" port 465, isSSL false 通过网上搜索查询一些资料,推测是邮箱的配置出问题了. 二.修改邮箱配置 // 创建属 ...
- Mac下使用sublime Text打开隐藏目录
我们用 sublime Text 打开时,默认是看到非隐藏的目录和文件,如下图: 这时候在这个节目,按下 command +shift + 句号 快捷键,会自动切换 隐藏状态的, 这时候就可以切换成下 ...
- UVA1583(最小生成元)
对于这种需要一遍遍枚举求解的,打表可以提高很多效率 #include <iostream> #include <string> #include <cstring> ...
- java设计模式-----9、观察者模式
Observer模式是行为模式之一,它的作用是当一个对象的状态发生变化时,能够自动通知其他关联对象,自动刷新对象状态. Observer模式提供给关联对象一种同步通信的手段,使某个对象与依赖它的其他对 ...