In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentagonal number, I can only wonder if we have to deal with septagonal numbers in Problem 46. Anyway the problem reads

Pentagonal numbers are generated by the formula, Pn=n(3n-1)/2. The first ten pentagonal numbers are:

1, 5, 12, 22, 35, 51, 70, 92, 117, 145, …

It can be seen that P4 + P7 = 22 + 70 = 92 = P8. However, their difference, 70 – 22 = 48, is not pentagonal.

Find the pair of pentagonal numbers, Pj and Pk, for which their sum and difference is pentagonal and D = |Pk – Pj| is minimised; what is the value of D?

I have found a solution which I will present to you in just a few lines, but I must admit that I haven’t been able to justify why it is the right solution it gives us. The solution I have made just finds a solution to the problem which happens to the right solution.

I did not want to generate a list of pentagonal numbers, so I wanted to make a small function which checks if a given number is pentagonal by checking if the inverse function yields an integer, just like in the solution to  Problem 42. We could rather easily calculate the inverse function as we did with the inverse function for triangular numbers, or we can cheat and peak at the pentagonal number entry at Wikipedia.

The inverse function is

That enables us to make a C# function that checks if a number is pentagonal

1
2
3
4
private bool isPentagonal(int number) {
    double penTest = (Math.Sqrt(1 + 24 * number) + 1.0) / 6.0;
    return penTest == ((int)penTest);
}

Once we have this crucial function we can make two nested loops to check pentagonal numbers until we find two where the sum and difference are pentagonal as well. I am frustrated since I can’t figure out why this one is the first. I can prove that it is indeed minimal by testing other numbers until the difference of two numbers reach the result of this problem. However I haven’t done that.

The outer loop of the algorithm counts upwards generating and the inner loop counting downwards testing all pentagonal numbers less than the one generated by the outer loop. The code looks like

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
int result = 0;
bool notFound = true;
int i = 1;
 
while (notFound) {
    i++;
    int n = i * (3 * i - 1) / 2;
 
    for (int j = i-1; j > 0; j--) {
        int m = j * (3 * j - 1) / 2;
        if (isPentagonal(n - m) && isPentagonal(n + m)) {
            result = n-m;
            notFound = false;
            break;
        }
    }
}

and gives the result

1
2
3
k = 2167, j = 1020
The value of D is 5482660
Solution took 35 ms

Wrapping up

I can see that many other people also can’t give the definitive answer to why the result is correct. If you understand the problem better than I do, please let me know exactly why I find the right solution.

You can as usual find the source code for the problem here.

ref

Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.的更多相关文章

  1. Project Euler 44 Sub-string divisibility( 二分 )

    题意:五边形数由公式Pn=n(3n−1)/2生成,在所有和差均为五边形数的五边形数对Pj和Pk中,找出使D = |Pk − Pj|最小的一对:此时D的值是多少? 思路:二分找和差 /********* ...

  2. Python练习题 048:Project Euler 021:10000以内所有亲和数之和

    本题来自 Project Euler 第21题:https://projecteuler.net/problem=21 ''' Project Euler: Problem 21: Amicable ...

  3. project euler 169

    project euler 169 题目链接:https://projecteuler.net/problem=169 参考题解:http://tieba.baidu.com/p/2738022069 ...

  4. Python练习题 039:Project Euler 011:网格中4个数字的最大乘积

    本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...

  5. Python练习题 033:Project Euler 005:最小公倍数

    本题来自 Project Euler 第5题:https://projecteuler.net/problem=5 # Project Euler: Problem 5: Smallest multi ...

  6. [project euler] program 4

    上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...

  7. Python练习题 029:Project Euler 001:3和5的倍数

    开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...

  8. Project Euler 9

    题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个 ...

  9. 【Project Euler 8】Largest product in a series

    题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × ...

随机推荐

  1. C#方法重载和方法重写的区别

    一.重载的条件: 1.必须在同一个类中: 2.方法名必须相同: 3.参数列表不能相同. 二.重写的条件: 1. 在不同的类中2. 发生方法重写的两个方法返回值,方法名,参数列表必须完全一致(必须具有相 ...

  2. 关于微信企业号操作api的sdk封装 (.net)

    做微信的第三方开发业半年多了 现在献上微信企业号的操作sdk(包括源码) 本人水平有限 望大家多提意见 下载地址献上:下载

  3. [转]分布式锁-RedisLockRegistry源码分析

    前言 官网的英文介绍大概如下: Starting with version 4.0, the RedisLockRegistry is available. Certain components (f ...

  4. "text"和new String("text")的区别

    转自:What is the difference between “text” and new String(“text”)? new String("text"); expli ...

  5. 手动添加Git Bash到右键菜单

    1. 打开注册表. 2. 找到[HKEY_CLASSES_ROOT\Directory\Background]. 3. 在[Background]下如果没有[shell],则右键-新建项[shell] ...

  6. *2.3.4_封装成agent

    上一节在验证平台中加入monitor时,读者看到了driver和monitor之间的联系:两者之间的代码高度相似.其本质是因为二者处理的是同一种协议,在同样一套既定的规则下做着不同的事情.由于二者的这 ...

  7. Go RabbitMQ(四)消息路由

    RabbitMQ_Routing 本节内容我们将对发布订阅增加一个特性:订阅子集.比如我们将一些危险的错误消息保存进硬盘中,同时在控制台仍然能够读取所有的消息 Bingings 上一节内容我们将队列跟 ...

  8. FocusBI:MDX检索多维模型

    微信公众号:FocusBI关注可了解更多的商业智能.数据仓库.数据库开发.爬虫知识及沪深股市数据推送.问题或建议,请关注公众号发送消息留言;如果你觉得FocusBI对你有帮助,欢迎转发朋友圈或在文章末 ...

  9. 关于svn插件突然失效问题

    这个分享一下 安装  MyBatisGenerator 插件 之后,svn失效,删掉mybatis 后,svn就恢复正常...这怎么割 一翻折腾无效,后来发现  MyBatisGenerator  和 ...

  10. guava快速入门(二)

    Guava工程包含了若干被Google的 Java项目广泛依赖 的核心库,例如:集合 [collections] .缓存 [caching] .原生类型支持 [primitives support] ...