Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.
In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentagonal number, I can only wonder if we have to deal with septagonal numbers in Problem 46. Anyway the problem reads
Pentagonal numbers are generated by the formula, Pn=n(3n-1)/2. The first ten pentagonal numbers are:
1, 5, 12, 22, 35, 51, 70, 92, 117, 145, …
It can be seen that P4 + P7 = 22 + 70 = 92 = P8. However, their difference, 70 – 22 = 48, is not pentagonal.
Find the pair of pentagonal numbers, Pj and Pk, for which their sum and difference is pentagonal and D = |Pk – Pj| is minimised; what is the value of D?
I have found a solution which I will present to you in just a few lines, but I must admit that I haven’t been able to justify why it is the right solution it gives us. The solution I have made just finds a solution to the problem which happens to the right solution.
I did not want to generate a list of pentagonal numbers, so I wanted to make a small function which checks if a given number is pentagonal by checking if the inverse function yields an integer, just like in the solution to Problem 42. We could rather easily calculate the inverse function as we did with the inverse function for triangular numbers, or we can cheat and peak at the pentagonal number entry at Wikipedia.
The inverse function is

That enables us to make a C# function that checks if a number is pentagonal
|
1
2
3
4
|
private bool isPentagonal(int number) { double penTest = (Math.Sqrt(1 + 24 * number) + 1.0) / 6.0; return penTest == ((int)penTest);} |
Once we have this crucial function we can make two nested loops to check pentagonal numbers until we find two where the sum and difference are pentagonal as well. I am frustrated since I can’t figure out why this one is the first. I can prove that it is indeed minimal by testing other numbers until the difference of two numbers reach the result of this problem. However I haven’t done that.
The outer loop of the algorithm counts upwards generating and the inner loop counting downwards testing all pentagonal numbers less than the one generated by the outer loop. The code looks like
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
int result = 0;bool notFound = true;int i = 1;while (notFound) { i++; int n = i * (3 * i - 1) / 2; for (int j = i-1; j > 0; j--) { int m = j * (3 * j - 1) / 2; if (isPentagonal(n - m) && isPentagonal(n + m)) { result = n-m; notFound = false; break; } }} |
and gives the result
|
1
2
3
|
k = 2167, j = 1020The value of D is 5482660Solution took 35 ms |
Wrapping up
I can see that many other people also can’t give the definitive answer to why the result is correct. If you understand the problem better than I do, please let me know exactly why I find the right solution.
You can as usual find the source code for the problem here.
Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.的更多相关文章
- Project Euler 44 Sub-string divisibility( 二分 )
题意:五边形数由公式Pn=n(3n−1)/2生成,在所有和差均为五边形数的五边形数对Pj和Pk中,找出使D = |Pk − Pj|最小的一对:此时D的值是多少? 思路:二分找和差 /********* ...
- Python练习题 048:Project Euler 021:10000以内所有亲和数之和
本题来自 Project Euler 第21题:https://projecteuler.net/problem=21 ''' Project Euler: Problem 21: Amicable ...
- project euler 169
project euler 169 题目链接:https://projecteuler.net/problem=169 参考题解:http://tieba.baidu.com/p/2738022069 ...
- Python练习题 039:Project Euler 011:网格中4个数字的最大乘积
本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...
- Python练习题 033:Project Euler 005:最小公倍数
本题来自 Project Euler 第5题:https://projecteuler.net/problem=5 # Project Euler: Problem 5: Smallest multi ...
- [project euler] program 4
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...
- Python练习题 029:Project Euler 001:3和5的倍数
开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...
- Project Euler 9
题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个 ...
- 【Project Euler 8】Largest product in a series
题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × ...
随机推荐
- 使用 Go 的 struct tag 来解析版本号字符串
各类软件的版本号定义虽然都不尽相同,但是其基本原理基本上还是相通的:通过特写的字符对字符串进行分割.我们把这一规则稍作整理,放到 struct tag 中,告诉解析器如何解析,下面就以 semver ...
- OAuth机制原理(开放授权机制)
1.简述 OAuth(Open Authorization,开放授权)是为用户资源的授权定义了一个安全.开放及简单的标准,第三方无需知道用户的账号及密码,就可获取到用户的授权信息,并且这是安全的. 国 ...
- Git学习系列之Git基本操作拉取项目(图文详解)
前面博客 Git学习系列之Git基本操作推送项目(图文详解) 当然,如果多人协作,或者多个客户端进行修改,那么我们还要拉取(Pull ... )别人推送到在线仓库的内容下来. 大神们是不推荐使用 pu ...
- MySQL存储引擎 InnoDB与MyISAM的区别
来源:http://www.jb51.net/article/47597.htm 基本的差别:MyISAM类型不支持事务处理等高级处理,而InnoDB类型支持.MyISAM类型的表强调的是性能,其执行 ...
- python-哈夫曼树
#!/usr/bin/python #coding=utf-8 #哈夫曼树创建 class Node(): def __init__(self,value,left=None,right=None): ...
- orcale 之sql/plus set 命令
set 命令用于设置系统变量的值.通过set 命令设置的系统变量有很多,下面把最常用的罗列出来: 1. arraysize 用于从数据库中一次提取的行数,其默认为 15. SQL> show a ...
- PHP之string之str_repeat()函数使用
str_repeat (PHP 4, PHP 5, PHP 7) str_repeat - Repeat a string str_repeat - 重复一个字符串 Description strin ...
- 2-9 js基础 cookie封装
// JavaScript Document 'use strict'; function setCookie(sName,sValue,iDay){ if(iDay){ var oDate = ne ...
- Elasticsearch使用BulkProcessor批量插入
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high-document-bulk. ...
- 【LeetCode题解】144_二叉树的前序遍历
目录 [LeetCode题解]144_二叉树的前序遍历 描述 方法一:递归 Java 代码 Python 代码 方法二:非递归(使用栈) Java 代码 Python 代码 [LeetCode题解]1 ...