如何进行python性能分析?】的更多相关文章

Python性能分析 https://www.cnblogs.com/lrysjtu/p/5651816.html https://www.cnblogs.com/cbscan/articles/3341231.html 使用ipdb 使用profile import profile def profileTest(): Total =1; for i in range(10): Total=Total*(i+1) print Total return Total if __name__ ==…
前言 我们可以通过查看程序核心算法的代码,得知核心算法的渐进上界或者下界,从而大概估计出程序在运行时的效率,但是这并不够直观,也不一定十分靠谱(在整体程序中仍有一些不可忽略的运行细节在估计时被忽略了),因此在实际评测程序时我们还是需要实际的考量程序的运行时间和瓶颈,最好具体到执行一段代码多少次,执行一段代码花了多少时间,幸好的是Python自带了许多有用的工具,可以帮助我们实现这些要求,下面是一些我在学习中记录的笔记,从简单到复杂介绍了python性能分析的方法,希望我的笔记能帮到您. 注:写作…
[编者按]本文作者为 Bryan Helmig,主要介绍 Python 应用性能分析的三种进阶方案.文章系国内 ITOM 管理平台 OneAPM 编译呈现. 我们应该忽略一些微小的效率提升,几乎在 97% 的情况下,都是如此:过早的优化是万恶之源.-- Donald Knuth 如果不先想想Knuth的这句名言,就开始进行优化工作,是不明智的.然而,有时你为了获得某些特性不假思索就写下了O(N^2) 这样的代码,虽然你很快就忘记它们了,它们却可能反咬你一口,给你带来麻烦:本文就是为这种情况而准备…
Python性能分析工具Profile 代码优化的前提是需要了解性能瓶颈在什么地方,程序运行的主要时间是消耗在哪里,对于比较复杂的代码可以借助一些工具来定位,python 内置了丰富的性能分析工具,如 profile,cProfile 与 hotshot 等.其中 Profiler 是 python 自带的一组程序,能够描述程序运行时候的性能,并提供各种统计帮助用户定位程序的性能瓶颈.Python 标准模块提供三种 profilers:cProfile,profile 以及 hotshot. p…
百度云盘|Python性能分析与优化PDF高清完整版免费下载 提取码:ubjt 内容简介 全面掌握Python代码性能分析和优化方法,消除性能瓶颈,迅速改善程序性能! 对于Python程序员来说,仅仅知道如何写代码是不够的,还要能够充分利用关键代码的处理能力.本书将讨论如何对Python代码进行性能分析,找出性能瓶颈,并通过不同的性能优化技术消除瓶颈. 本书从基本的概念开始,循序渐进地介绍高级的优化主题.首先介绍了Python的主流性能分析器,以及用于帮助理解性能分析结果的可视化工具.然后介绍了…
在分析python代码性能瓶颈,但又不想修改源代码的时候,ipython shell以及第三方库提供了很多扩展工具,可以不用在代码里面加上统计性能的装饰器,也能很方便直观的分析代码性能.下面以我自己实现的一个快排代码为例,带你使用集中不同的性能分析工具. def quick_sort(data, low, high): if low >= high: return left, right = low, high key = data[left] while left < right: whil…
http://www.admin10000.com/document/2861.html 尽管并非每个你写的Python程序都需要严格的性能分析,但了解一下Python的生态系统中很多优秀的在你需要做性能分析的时候可以使用的工具仍然是一件值得去做的事. 分析一个程序的性能,最终都归结为回答4个基本的问题: 程序运行速度有多快? 运行速度瓶颈在哪儿? 程序使用了多少内存? 内存泄露发生在哪里? 下面,我们将使用一些优秀的工具深入回答这些问题. 使用time工具粗糙定时 首先,我们可以使用快速然而粗…
虽然运行速度慢是 Python 与生俱来的特点,大多数时候我们用 Python 就意味着放弃对性能的追求.但是,就算是用纯 Python 完成同一个任务,老手写出来的代码可能会比菜鸟写的代码块几倍,甚至是几十倍(这里不考虑算法的因素,只考虑语言方面的因素).很多时候,我们将自己的代码运行缓慢地原因归结于python本来就很慢,从而心安理得地放弃深入探究. 但是,事实真的是这样吗?面对python代码,你有分析下面这些问题吗: 程序运行的速度如何?        程序运行时间的瓶颈在哪里?    …
英文原文:http://www.huyng.com/posts/python-performance-analysis/ 译文:http://www.oschina.net/translate/python-performance-analysis 虽然你所写的每个Python程序并不总是需要严密的性能分析,但是当这样的问题出现时,如果能知道Python生态系统中的许多种工具,这样总是可以让人安心的. 分析一个程序的性能可以归结为回答4个基本的问题: 1.它运行的有多块? 2.那里是速度的瓶颈?…
虽然并非你编写的每个 Python 程序都要求一个严格的性能分析,但是让人放心的是,当问题发生的时候,Python 生态圈有各种各样的工具可以处理这类问题. 分析程序的性能可以归结为回答四个基本问题: 正运行的多快 速度瓶颈在哪里 内存使用率是多少 内存泄露在哪里 下面,我们将用一些神奇的工具深入到这些问题的答案中去. 用 time 粗粒度的计算时间 让我们开始通过使用一个快速和粗暴的方法计算我们的代码:传统的 unix time 工具. 1 2 3 4 $ time python yourpr…