二叉树学习三:AVL树】的更多相关文章

1.AVL树: 1)其左子树(TL)与右子树(TR)是AVL树: 2)|HL-HR|<=1,其中HL和HR是TL和TR的高度: 3)高度为h的AVL树,结点数2*h-1. AVL树查找,插入,删除在平均和最坏情况下都是O(logn),插入和删除可能需要一次或多次旋转重新达到平衡.AVL树的旋转平衡思路:以不平衡点为根的子树高度应保持不变,新结点插入后,向根回溯到第一个原平衡因 子不为0的结点.旋转方法如下: 1)LL型:左旋转…
思路:AVL树是高度平衡的二叉搜索树,这里为了清晰说明,分别判断是否为搜索树,是否为平衡树. struct TreeNode { struct TreeNode *left; struct TreeNode *right; int key; }; //这里先判断是否为二叉搜索树,其次判断是否为平衡的 bool IsAVL(TreeNode *root,int depth) { if (isBST(root)&&isBalance(root,&depth)) return true;…
概要 前面分别介绍了AVL树"C语言版本"和"C++版本",本章介绍AVL树的Java实现版本,它的算法与C语言和C++版本一样.内容包括:1. AVL树的介绍2. AVL树的Java实现3. AVL树的Java测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3577479.html 更多内容: 数据结构与算法系列 目录 (01) AVL树(一)之 图文解析 和 C语言的实现(02) AVL树(二)之 C++的实…
转载请注明出处:https://www.cnblogs.com/morningli/p/16033733.html AVL树是带有平衡条件的二叉查找树,其每个节点的左子树和右子树的高度最多相差1.为了保持AVL树始终平衡,每次插入和删除都需要进行额外的平衡操作. 上面两个二叉搜索树,A是AVL树,而B不是. 为什么需要平衡二叉树? 二叉搜索树一定程度上可以提高搜索效率,但是因为二叉树没有对树的形状进行限制,很容易就退化成了一个链表,搜索效率降低为 O(n). 这里说明会导致二叉搜索树退化的两种原…
概要 本章介绍AVL树.和前面介绍"二叉查找树"的流程一样,本章先对AVL树的理论知识进行简单介绍,然后给出C语言的实现.本篇实现的二叉查找树是C语言版的,后面章节再分别给出C++和Java版本的实现.建议:若您对"二叉查找树"不熟悉,建议先学完"二叉查找树"再来学习AVL树. 目录 1. AVL树的介绍2. AVL树的C实现3. AVL树的C实现(完整源码)4. AVL树的C测试程序 转载请注明出处:http://www.cnblogs.com…
概要 上一章通过C语言实现了AVL树,本章将介绍AVL树的C++版本,算法与C语言版本的一样. 目录 1. AVL树的介绍2. AVL树的C++实现3. AVL树的C++测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3577360.html 更多内容: 数据结构与算法系列 目录 (01) AVL树(一)之 图文解析 和 C语言的实现(02) AVL树(二)之 C++的实现(03) AVL树(三)之 Java的实现 AVL树的介绍 AVL树是…
@ 目录 一.背景 二.平衡二分搜索树---AVL树 2.1 AVL树的基本概念 结点 高度 平衡因子 2.2 AVL树的验证 三.旋转操作 3.1 L L--需要通过右旋操作 3.2 R R--需要通过左旋操作 3.3 L R--需要先通过左旋再右旋操作 2.4 R L--需要先通过右旋再左旋操作 四.AVL树完整代码实现 一.背景 二叉树是一种常用的数据结构,更是实现众多算法的一把利器.(可参考<自己动手作图深入理解二叉树.满二叉树及完全二叉树>) 二分搜索树(Binary Search…
一 什么是AVL树(平衡二叉树): AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为平衡二叉树.下面是平衡二叉树和非平衡二叉树对比的例图: 平衡因子(bf):结点的左子树的深度减去右子树的深度,那么显然-1<=bf<=1; AVL树具有以下性质: 根的左右子树的高度之差的绝对值不能超过1 根的左右子树都是平衡二叉树 二 AVL树的旋转…
树.二叉树.三叉树.平衡排序二叉树AVL 一.树的定义 树是计算机算法最重要的非线性结构.树中每个数据元素至多有一个直接前驱,但可以有多个直接后继.树是一种以分支关系定义的层次结构.    a.树是n(≥0)结点组成的有限集合.{N.沃恩}     (树是n(n≥1)个结点组成的有限集合.{D.E.Knuth})      在任意一棵非空树中:        ⑴有且仅有一个没有前驱的结点----根(root).        ⑵当n>1时,其余结点有且仅有一个直接前驱.         ⑶所有结…
二叉查找树(BSTree)中进行查找.插入和删除操作的时间复杂度都是O(h),其中h为树的高度.BST的高度直接影响到操作实现的性能,最坏情况下,二叉查找树会退化成一个单链表,比如插入的节点序列本身就有序,这时候性能会下降到O(n).可见在树的规模固定的前提下,BST的高度越低越好. >>平衡二叉树 平衡二叉树是计算机科学中的一类改进的二叉查找树.平衡二叉树具有以下性质: (1)一棵空树是平衡二叉树 (2)如果树不为空,它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉…