Deep Attentive Tracking via Reciprocative Learning NIPS18_tracking Type:Tracking-By-Detection 本篇论文地主要创新是在将注意机制引入到目标跟踪 摘要:源自认知神经科学地视觉注意促进人类对相关的内容的感知.近些年大量工作将注意机制引入到计算机视觉系统中.对于视觉跟踪来说,面临的最大问题在于目标外表的大尺度变化.自注图通过选择性关注临时的鲁棒特征提升视觉跟踪的性能.当前的一些检测跟踪算法主要使用额外的自注模型…
Summary on Visual Tracking: Paper List, Benchmarks and Top Groups 2018-07-26 10:32:15 This blog is copied from: https://github.com/foolwood/benchmark_results Thanks for the careful list of visual tracking provided by foolwood Visual Trackers CVPR20…
Where can I start with Deep Learning? By Rotek Song, Deep Reinforcement Learning/Robotics/Computer Vision/iOS | 03/01/2017 If you are a newcomer to the Deep Learning area, the first question you may have is “Which paper should I start reading from?…
What's the most effective way to get started with deep learning? 29 Answers Yoshua Bengio, My lab has been one of the three that started the deep learning approach, back in 2006, along with Hinton's... Answered Jan 20, 2016 Originally Ans…
深度强化学习的18个关键问题 from: https://zhuanlan.zhihu.com/p/32153603 85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两天我阅读了两篇篇猛文A Brief Survey of Deep Reinforcement Learning 和 Deep Reinforcement Learning: An Overview ,作者排山倒海的引用了200多篇文献,阐述强化学习未来的方向.原文归纳出深度强化学习中的常见科学问题,…
Reading List List of reading lists and survey papers: Books Deep Learning, Yoshua Bengio, Ian Goodfellow, Aaron Courville, MIT Press, In preparation. Review Papers Representation Learning: A Review and New Perspectives, Yoshua Bengio, Aaron Courville…