seaborn画热力图注意的几点问题】的更多相关文章

最近在使用注意力机制实现文本分类,我们需要观察每一个样本中,模型的重心放在哪里了,就是观察到权重最大的token.这时我们需要使用热力图进行可视化. 我这里用到:seaborn seaborn.heatmap seaborn.heatmap(data, vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=None, fmt='.2g', annotkws=None, linewidths=0, linecolor='…
由于直方图受组距(bin size)影响很大,设置不同的组距可能会产生完全不同的可视化结果.因此我们可以用密度平滑估计来更好地反映数据的真实特征.具体可参见这篇文章:https://blog.csdn.net/unixtch/article/details/78556499. 还是用我们自己创建的一组符合正态分布的数据来画图. 准备工作:先导入matplotlib,seaborn和numpy,然后创建一个图像和一个坐标轴 import numpy as np from matplotlib im…
前言 在日常工作中,经常可以见到各种各种精美的热力图,热力图的应用非常广泛,下面一起来学习下Python的Seaborn库中热力图(heatmap)如何来进行使用. 本次运行的环境为: windows 64位系统 python 3.5 jupyter notebook ​ 1 构造数据 import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt % matplotlib…
有时我们不仅需要查看单个变量的分布,同时也需要查看变量之间的联系,这时就需要用到联合分布图. 这里利用Jake Vanderplas所著的<Python数据科学手册>一书中的数据,学习画图. 数据地址:http://raw.githubusercontent.com/jakevdp/marathon-data/master/marathon-data.csv 先来看一下这个数据文件(此处只摘取部分): age gender split final 0 33 M 01:05:38 02:08:5…
矩阵图非常有用,人们经常用它来查看多个变量之间的联系. 下面用著名的鸢尾花数据来画一个矩阵图.从sklearn导入鸢尾花数据,然后将其转换成pandas的DataFrame类型,最后用seaborn画图.(seaborn包里也有这个数据,也可以直接从seaborn包导入此数据) 矩阵图: sns.pairplot(data,hue=...)   ---   hue为data里的数据,用其来显示不同颜色 由于data需要的格式为每列是变量(在这里是鸢尾花的四个特征),每行则是各变量的观测数据,因此…
PYSPARK_DRIVER_PYTHON=/home/zhangyu/anaconda3/bin/jupyter-notebook PYSPARK_DRIVER_PYTHON_OPTS=" --ip=127.0.0.1" pyspark catplot distplot jointplot kdeplot pairplot replot replot dot…
今天我来给你讲讲Python的可视化技术. 如果你想要用Python进行数据分析,就需要在项目初期开始进行探索性的数据分析,这样方便你对数据有一定的了解.其中最直观的就是采用数据可视化技术,这样,数据不仅一目了然,而且更容易被解读.同样在数据分析得到结果之后,我们还需要用到可视化技术,把最终的结果呈现出来. 可视化视图都有哪些? 按照数据之间的关系,我们可以把可视化视图划分为4类,它们分别是比较.联系.构成和分布.我来简单介绍下这四种关系的特点: 比较:比较数据间各类别的关系,或者是它们随着时间…
混淆矩阵(Confusion Matrix),是一种在深度学习中常用的辅助工具,可以让你直观地了解你的模型在哪一类样本里面表现得不是很好. 如上图,我们就可以看到,有一个样本原本是0的,却被预测成了1,还有一个,原本是2的,却被预测成了0. 简单介绍作用后,下面上代码: import seaborn as sns from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt 导入需要的包,如果有一些包没有…
直方图用于展示数据的分布情况,x轴是一个连续变量,y轴是该变量的频次. 下面利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://datasets.flowingdata.com/crimeRatesByState2005.csv 以下是这个数据文件的前5行: state murder forcible_rape robbery aggravated_assault \ 0 United States 5.6 31.7 140.7 291…
1. 画一个基本的热力图, 通过热力图用来观察样本的分布情况 import matplotlib.pyplot as plt import numpy as np np.random.seed(0) import seaborn as sns # 初始化参数 sns.set() uniform_data = np.random.rand(3, 3) heatmap = sns.heatmap(uniform_data) plt.show() 2. 通过vmin 和 vmax设置热力图的区间 un…
In [1]: %matplotlib inline import numpy as np import matplotlib.pyplot as plt import seaborn as sns np.random.seed(0) sns.set()   画热力图 In [2]: uniform_data=np.random.rand(3,3) #打印数据 print(uniform_data) #画热力图 heatmap=sns.heatmap(uniform_data)   [[0.54…
Python开源项目,期待大家和我们一起共同维护 github排名榜单 https://github.com/trending github搜索榜单:https://github.com/search 说明 以下总结大部分来至于 [TimLiu-Python] (https://github.com/Tim9Liu9/TimLiu-Python) ,欢迎大家查看原版 Feedback 期望大家随时能提出宝贵的意见(直接提交issues即可).请广大网友只按照目录结构(即使目录结构有问题)添加三方…
目录 一.折线图 二.直方图 三.垂直条形图 四.水平条形图 五.饼图 六.箱线图 七.热力图 八.散点图 九.蜘蛛图 十.二元变量分布 十一.面积图 十二.六边形图 以下默认所有的操作都先导入了Numpy.pandas.matplotlib.seaborn import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns 一.折线图 折线图可以用来表示数据随着时间变化的趋势…
前一阵有个字节跳动的程序员火了,年仅28岁实现了财务自由,宣布提前退休.最直接的原因是选择了一家发展前景很好的创业公司.当然平时我们经常能听到,某某人加入创业公司,xx年后公司上市,身价暴涨,财务自由.但这都是小概率事件,大部分人往往要么等不到公司上市就离职,要么公司还没上市就破产.这两天找到一份近几年破产的IT公司名单,共6000家,下面就对这份数据做个简单分析. 分析思路大致如下: 了解整体概况 单维度分析破产的公司 维度交叉分析破产公司 首先导入分析所需的模块 import pandas …
The Python Tutorial (Python 2.7.11) 的中文翻译版本.Python Tutorial 为初学 Python 必备官方教程,本教程适用于 Python 2.7.X 系列. 在线阅读 » Fork Me » The Python Tutorial (Python 3.5.1) 的中文翻译版本.Python Tutorial 为初学 Python 必备官方教程,本教程适用于 Python 3.5.x. 在线阅读 » Fork Me » Flask 是一个轻量级的 We…
本文首发于微信公众号“Python数据之道” 前言 本文主要摘录自 pycon 2017大会的一个演讲,同时结合自己的一些理解. pycon 2017的相关演讲主题是“The Python Visualization Landscape”. 先来一张全景图镇楼~~ 看完这张图是不是有点懵? 别着急,我们一起来看看后面的阐述. python可视化库可以大致分为几类: 基于matplotlib的可视化库 基于JS的可视化库 基于上述两者或其他组合功能的库 基于matplotlib的可视化库 matp…
学习利用python进行数据分析的笔记&下星期二内部交流会要讲的内容,一并分享给大家.博主粗心大意,有什么不对的地方欢迎指正~还有许多尚待完善的地方,待我一边学习一边完善~ 前言:各种和数据分析相关python库的介绍(前言1~4摘抄自<利用python进行数据分析>) 1.Numpy: Numpy是python科学计算的基础包,它提供以下功能(不限于此): (1)快速高效的多维数组对象naarray (2)用于对数组执行元素级计算以及直接对数组执行数学运算的函数 (3)用于读写硬盘上…
本博客是博主在学习了两篇关于 "House Prices: Advanced Regression Techniques" 的教程 (House Prices EDA 和 Comprehensive data exploration with Python )后的总结,重点在于探究如何分析真实数据的分布以及如何对数据进行预处理,同时强化 pandas 和 seaborn 包的操作技巧. 1 了解数据的基本统计信息 利用pandas读取数据: import pandas as pd im…
本文主要是对公众号之前发布的文章进行分类整理,方面大家查阅,以后会不定期对文章汇总进行更新与发布.   一.推荐阅读: Anaconda安装第三方包(whl文件) 福布斯系列之数据分析思路篇 福布斯系列之数据采集 python求职Top10城市,来看看是否有你所在的城市 Python:一篇文章掌握Numpy的基本用法 Pandas: 如何将一列中的文本拆分为多行? 2017年上半年过去了,你读了多少本书? 二.文章分类汇总: Python基础: Python读取和处理文件后缀为".sqlite&…
为大家介绍个插件:jCrop.这个插件被我用在了多个项目中,如通过画热力图来查看某块地方用户的浏览数,放大缩小拖动选框来实时预览所选区域的图片病裁剪,设置头像是选框必须要是正方形,它有着丰富的配置参数和回调函数. 其常用的参数和回调方法在网上都可以找到,例如是否允许拖放,是否允许新选框,选框允许的大小.颜色.边界,禁用选框.销毁选框.重新调用选框等,使用起来非常方便. 使用方法是: 1.载入css <link rel="stylesheet" href="jquery.…
学习利用python进行数据分析的笔记儿&下星期二内部交流会要讲的内容,一并分享给大家.博主粗心大意,有什么不对的地方欢迎指正~还有许多尚待完善的地方,待我一边学习一边完善~ 前言:各种和数据分析相关python库的介绍(前言1~4摘抄自<利用python进行数据分析>) 1.Numpy: Numpy是python科学计算的基础包,它提供以下功能(不限于此): (1)快速高效的多维数组对象naarray (2)用于对数组执行元素级计算以及直接对数组执行数学运算的函数 (3)用于读写硬盘…
一.数据探索 1.数据读取 遍历文件夹,读取文件夹下各个文件的名字:os.listdir() 方法:用于返回指定的文件夹包含的文件或文件夹的名字的列表.这个列表以字母顺序. 它不包括 '.' 和'..' 即使它在文件夹中. 1.1 CSV格式数据 详细说明 (1)读取 ### python导入csv文件的4种方法 # 1.原始的方式 lines = [line.split(',') for line in open('iris.csv')] df = [[float(x) for x in li…
目录 第四章 机器学习 4.1 机器学习简介 4.1.1 机器学习分类 4.2 Scikit-Learn简介 4.2.1 Scikit-Learn的数据表示 4.2.2 Scikit-Learn的评估器API 4.2.3 应用:手写数字探索 第四章 机器学习 4.1 机器学习简介 机器学习是用数据科学的计算能力和算法能力去弥补统计学的不足. 基本统计学概念:偏差(bias).方差(variance).过拟合(overfitting)和欠拟合(underfitting) 4.1.1 机器学习分类…
1.Numpy: Numpy是python科学计算的基础包,它提供以下功能(不限于此): (1)快速高效的多维数组对象naarray (2)用于对数组执行元素级计算以及直接对数组执行数学运算的函数 (3)用于读写硬盘上基于数组的数据集的工具 (4)线性代数运算.傅里叶变换,以及随机数生成 (5)用于将C.C++.Fortran代码集成到python的工具 2.pandas pandas提供了使我们能够快速便捷地处理结构化数据的大量数据结构和函数.pandas兼具Numpy高性能的数组计算功能以及…
二.分类图 1. 分类散点图 (1)散点图striplot(kind='strip') 方法1: seaborn.stripplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, jitter=True, dodge=False, orient=None, color=None, palette=None, size=5, edgecolor='gray', linewidth=0, ax=None, **kwa…
将 Seaborn 提供的样式声明代码 sns.set() 放置在绘图前,就可以设置图像的样式 sns., color_codes=False, rc=None) context= 参数控制着默认的画幅大小,分别有 {paper, notebook, talk, poster} 四个值.其中,poster > talk > notebook > paper. style= 参数控制默认样式,分别有 {darkgrid, whitegrid, dark, white, ticks},你可以…
原文链接 https://blog.csdn.net/m0_38103546/article/details/79935671…
Seaborn-Powerful Matplotlib Extension seaborn实现直方图和密度图 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline s1=pd.Series(np.random.randn(1000)) plt.hist(s1)#直方图 结果: (array([ 1., 4., 19., 88.,…
Seaborn 数据可视化基础 介绍 Matplotlib 是支持 Python 语言的开源绘图库,因为其支持丰富的绘图类型.简单的绘图方式以及完善的接口文档,深受 Python 工程师.科研学者.数据工程师等各类人士的喜欢.Seaborn 是以 Matplotlib 为核心的高阶绘图库,无需经过复杂的自定义即可绘制出更加漂亮的图形,非常适合用于数据可视化探索. 知识点 关联图 类别图 分布图 回归图 矩阵图 组合图 Seaborn 介绍 Matplotlib 应该是基于 Python 语言最优…
seaborn.heatmap()的参数 seaborn.heatmap(data, vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=None, fmt='.2g', annot_kws=None, linewidths=0, linecolor='white', cbar=True, cbar_kws=None, cbar_ax=None, square=False, xticklabels='auto', y…