K-means之matlab实现】的更多相关文章

KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过聚类后才变得有点顺序,先无序,后有序 4.训练过程:没有明显的前期训练过程,属于memory-based learning 有明显的前期训练过程 5.K的含义:来了一个样本x,要给它分类,即求出它的y,就从数据集中,在x附近找离它最近的K个数据点,这K个数据点,类别c占的个数最多,就把x的label…
K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467.87,1141.82,478.42,457.64TianJin,2459.77,495.47,697.33,302.87,284.19,735.97,570.84,305.08HeBei,1495.63,515.90,362.37,285.32,272.95,540.58,364.91,188.63…
1.题目分析: 查找无序数组中的第K大数,直观感觉便是先排好序再找到下标为K-1的元素,时间复杂度O(NlgN).在此,我们想探索是否存在时间复杂度 < O(NlgN),而且近似等于O(N)的高效算法. 还记得我们快速排序的思想麽?通过“partition”递归划分前后部分.在本问题求解策略中,基于快排的划分函数可以利用“夹击法”,不断从原来的区间[0,n-1]向中间搜索第k大的数,大概搜索方向见下图: 2.参考代码: #include <cstdio> #define swap(x,y…
1.参考 reference 1. tutorial主页:http://www.bcs.rochester.edu/people/raizada/fmri-matlab.htm. 2.speech_brain_images.mat数据:speech_brain_images.mat. 3.showing_brain_images_tutorial显示大脑图像代码:showing_brain_images_tutorial.m . 4.overlaying_Tmaps_tutorial.m叠加t检…
矩阵相关: 在matlab中,矩阵或向量是 column-major 表示形式.用 [] 来构建向量或矩阵, 用()来引用向量或矩阵中的元素:用:表示矩阵中的该index下的所以元素: matlab中取整函数的使用方法:(来自:http://www.ilovematlab.cn/thread-91895-1-1.html论坛) Matlab取整函数有: fix, floor, ceil, round.具体应用方法如下:fix朝零方向取整,如fix(-1.3)=-1; fix(1.3)=1;flo…
多校联赛第一场(hdu4862) Jump Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 644    Accepted Submission(s): 275 Problem Description There are n*m grids, each grid contains a number, ranging from 0-9.…
Return an array of ones with the same shape and type as a given array. Parameters: a : array_like The shape and data-type of a define these same attributes of the returned array. dtype : data-type, optional Overrides the data type of the result. New…
神经网络Package [目前还属于草稿版,等我整个学习玩以后会重新整理] 模块Module module定义了训练神经网络需要的所有基础方法,并且是可以序列化的抽象类. module有两种状态变量:output和gradInput [output] forward(input) 利用input对象计算其对应的output.通常input和output都是Tensor类型的.有时候会有例外例如table layers(Tensor的子类).Forward之后,output变量应该被更新为新的值了…
About this Course This course will teach you how to build convolutional neural networks and apply it to image data. Thanks to deep learning, computer vision is working far better than just two years ago, and this is enabling numerous exciting applica…
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightforward. In this module, we share best practices for applying machine learning in practice, and discuss the best ways to evaluate performance of the le…