前言: 好吧我承认已经有四年多没有更新博客了.... 在这四年中发生了很多事情,换了工作,换了工作的方向.在工作的第一年的时候接触机器学习,从那之后的一年非常狂热的学习机器学习的相关技术,也写了一些自己的理解和感悟.今天大概看了一下这个博客的总体阅读人数已经有70多万了,印象中之前还只有十多二十万.很高兴这些文章能够帮助你更好的理解一些机器学习相关的基础知识,非常感谢各位读者和爬虫机器人(:-p)的支持! 后来个人选择将工作的方向从机器学习换到了Hadoop相关领域,中间有很多感悟我想之后再单独…
原文链接:http://www.d1net.com/bigdata/news/345893.html 先简单的做个自我介绍,我是云6期的,黑马相比其它培训机构的好偶就不在这里说,想比大家都比我清楚: 经常遇到有人问我大数据前景如何.大数据和Android.iOS对比怎么样等一些问题,为解决大家的困惑,抽时间写了这篇文章,简单对比一下大数据和移动开发的前景,给大家做个参考. 可能很多人都还很困惑,什么是大数据,其实可以简单的这么理解:大数据就是对大量数据进行有效处理的一种解决方案:因为随着数据量的…
中国大数据技术大会(BDTC)的前身是Hadoop中国云计算大会(HadoopinChina,HiC).从2008年仅60余人参加的技术沙龙发展到当下数千人的技术盛宴,目前已成为国内最具影响力.规模最大的大数据领域技术盛会.中国大数据技术大会(BDTC)作为极具实战价值的专业交流平台,中国大数据技术大会已经成为国内外中高级技术精英最期待的深度分享会. 2016中国大数据技术大会将于12月8日-10日在北京举行,大会为期三天,聚焦行业最佳实践,数据与应用的深度融合,关注热门技术在行业中的实践和应用…
大数据测试之初识Hadoop POPTEST老李认为测试开发工程师是面向测试的开发,也就是说,写代码就是为完成测试任务服务的,写自动化测试(性能自动化,功能自动化,安全自动化,接口自动化等等)的case或者开发测试工具完成不同类型的测试.其实自动化测试涉及面非常之广,目前来讲,case基本都可以写成自动化,而性能测试的脚本开发要围绕业务和协议特点来完成开发,并测试完成后依靠软件分析工具对被测试系统进行评估测试. 未来的技术趋势是云测试,大数据测试,安全性测试,这些要完成测试都需要自动化来完成,而…
一.MQ(Message Queue) 即 消息队列,一般用于应用系统解耦.消息异步分发,能够提高系统吞吐量.MQ的产品有很多,有开源的,也有闭源,比如ZeroMQ.RabbitMQ. ActiveMQ.Kafka/Jafka.Kestrel.Beanstalkd.HornetQ.Apache Qpid.Sparrow.Starling.Amazon SQS.MSMQ等,甚至Redis也可以用来构造消息队列.至于如何取舍,取决于你的需求. 由于工作需要和兴趣爱好,曾经写过关于RabbitMQ的系…
大数据时代之hadoop(一):hadoop安装 大数据时代之hadoop(二):hadoop脚本解析 大数据时代之hadoop(三):hadoop数据流(生命周期) 大数据时代之hadoop(四):hadoop 分布式文件系统(HDFS) hadoop的核心分为两块,一是分布式存储系统-hdfs,这个我已经在上一章节大致讲了一下,还有一个就是hadoop的计算框架-mapreduce. mapreduce事实上就是一个移动式的基于key-value形式的分布式计算框架. 其计算分为两个阶段,m…
随着云计算.大数据迅速发展,亟需用hadoop解决大数据量高并发访问的瓶颈.谷歌.淘宝.百度.京东等底层都应用hadoop.越来越多的企 业急需引入hadoop技术人才.由于掌握Hadoop技术的开发人员并不多,直接导致了这几年hadoop技术的薪水远高于JavaEE及 Android程序员. Hadoop入门薪资已经达到了 8K 以上,工作1年可达到 1.2W 以上,具有2-3年工作经验的hadoop人才年薪可以达到 30万—50万 . 一般需要大数据处理的公司基本上都是大公司,所以学习had…
  第1章 大数据概论 1.1 大数据概念 大数据概念如图2-1 所示. 图2-1 大数据概念 1.2 大数据特点(4V) 大数据特点如图2-2,2-3,2-4,2-5所示 图2-2 大数据特点之大量 图2-3 大数据特点之高速 图2-4 大数据特点之多样 图2-5 大数据特点之低价值密度 1.3 大数据应用场景 大数据应用场景如图2-6,2-7,2-8,2-9,2-10,2-11所示 图2-6 大数据应用场景之物流仓储 图2-7 大数据应用场景之零售 图2-8 大数据应用场景之旅游 图2-9…
二.Work Queues(using the Java Client) 走起   在第上一个教程中我们写程序从一个命名队列发送和接收消息.在这一次我们将创建一个工作队列,将用于分发耗时的任务在多个工作者(worker)之间. 背后的主要思想工作队列(又名:任务队列)是为了避免立即做一个资源密集型任务,不得不等待它完成.相反,我们安排的任务要做.我们封装任务作为消息并将其发送到一个队列.工作进程在后台运行将流行的任务和最终执行的工作.当您运行许多worker的任务将在他们之间共享.这个概念是特别…
柯南君:看大数据时代下的IT架构(4)消息队列之RabbitMQ--案例(Helloword起航) 二.起航 本章节,柯南君将从几个层面,用官网例子讲解一下RabbitMQ的实操经典程序案例,让大家重新回到经典“Hello world!”(The simplest thing that does something )时代,RabbitMQ 支持N多种客户端(client),这里无法一一讲解,暂定java client,有时间的情况下,在弥补一下. 事先,先普及一下图标(我们会在下面的事例中,会…
柯南君:看大数据时代下的IT架构(3)消息队列之RabbitMQ-安装.配置与监控 一.安装 1.安装Erlang 1)系统编译环境(这里采用linux/unix 环境) ① 安装环境 虚拟机:VMware® Workstation 10.0.1 build Linux系统:CentOS6.5 rabbitMQ官网下载:http://www.rabbitmq.com/download.html Erlang的官网下载: http://www.erlang.org/download.html 2)…
本文转载自:http://blog.sina.com.cn/s/blog_5399b8660102wxks.html 2016 CCF 大数据与计算智能大赛已经落下帷幕,11个赛题由众多大神包揽奖项,其中有些还在赛后开源了比赛资料,现将目前已知的资料整理如下,供各位同学一起参考学习.若有意公开自己的比赛资料或者发现整理的列表中有遗漏的,可以联系我(金陵书生, netivs@qq.com )补充修订.有问题也可在群里讨论.部分比赛PPT已经放到大数据比赛交流群,请在群文件里查看. 1)O2O 赛题…
转自:https://www.cnblogs.com/reed/p/7730338.html 今天做题,其中一道是 请简要描述一下Hadoop, Spark, MPI三种计算框架的特点以及分别适用于什么样的场景. 一直想对这些大数据计算框架总结一下,只可惜太懒,一直拖着.今天就借这个机会好好学习一下. 一张表 名称 发起者 语言 简介 特点 适用场景 Hadoop Yahoo工程师,Apache基金会 Java MapReduce分布式计算框架+HDFS分布式文件系统(GFS)+HBase数据存…
* 面试答案为LZ所写,如需转载请注明出处,谢谢. * 这里不涉及HiveSQL和HBase操作的笔试题,这些东西另有总结. 1.MR意义. MR是一个用于处理大数据的分布式离线计算框架,它采用”分而治之“的思想. 在分布式计算中,将分布式存储.分布式计算.负载均衡等复杂问题高度抽象成map和reduce两个过程. MR存在的意义在于它使得计算更廉价,大规模数据计算不再需要高级商用机器. 其次是这个软件的现成实现可以把程序员的精力集中在业务开发上,节省开发时间. 2.简述MR过程. MapRed…
环境 服务器:ubuntu-16.04.3-desktop-amd64.iso 创建hadoop用户 sudo useradd -m hadoop -s /bin/bash 本文中会大量使用到sudo命令.sudo是ubuntu中一种权限管理机制,管理员可以授权给一些普通用户去执行一些需要root权限执行的操作.当使用sudo命令时,就需要输入您当前用户的密码. sudo passwd hadoop 接着使用如下命令设置密码,可简单设置为 hadoop,按提示输入两次密码 sudo adduse…
一篇了解大数据架构及Hadoop生态圈 阅读建议,有一定基础的阅读顺序为1,2,3,4节,没有基础的阅读顺序为2,3,4,1节. 第一节 集群规划 大数据集群规划(以CDH集群为例),参考链接: https://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_host_allocations.html https://blog.csdn.net/xuefenxi/article/details/81563033 Clou…
前言 从今天起,我将一步一步的分享大数据相关的知识,其实很多程序员感觉大数据很难学,其实并不是你想象的这样,只要自己想学,还有什么难得呢? 学习Hadoop有一个8020原则,80%都是在不断的配置配置搭建集群,只有20%写程序! 一.引言(大数据时代) 1.1.从数据中得到信息 我们看一张图片: 我们知道这个图片上的人叫张小妹,年龄20岁,职业模特.但是如果只有数据没有图片的话,就没有意义的数据了.所以数据一定是在特定的环境下才有意义的. 我们再来看一张图片: 从这张图片分析出: 从纵向分析,…
Hadoop是云计算的事实标准软件框架,是云计算理念.机制和商业化的具体实现,是整个云计算技术学习中公认的核心和最具有价值内容. 如何从企业级开发实战的角度开始,在实际企业级动手操作中深入浅出并循序渐进的掌握Hadoop是本课程的核心.   云计算学习者的心声: 如何从企业级开发的角度,不断动手实际操作,循序渐进中掌握Hadoop,直到能够直接进行企业级开始,是困惑很多对云计算感兴趣的朋友的核心问题,本课程正是为解决此问题而生,学习者只需要按照一步步的跟着视频动手操作,即可完全无痛掌握Hadoo…
要想搞清楚spark跟Hadoop到底谁更厉害,首先得明白spark到底是什么鬼. 经过之前的介绍大家应该非常了解什么是Hadoop了(不了解的点击这里:白话大数据 | hadoop究竟是什么鬼),简单的说:Hadoop是由HDFS分布式文件系统和MapReduce编程模型等部分组成的分布式系统架构. 而Spark呢,更像是Hadoop MapReduce这样的编程模型. 其实要讲清楚Spark,内存和磁盘这两个概念是必须要弄清楚的,相信在座的老爷太太们都懂,我还是简单说一下吧.内存和磁盘两者都…
进入21世纪后,互联网开始大规模普及,线上业务和线上服务也开始逐渐走入人们的生活.尤其在智能手机和移动互联网诞生以后,人们对网络的依赖更是与日俱增.然而,伴随而来的则是涉及个人隐私的信息安全问题.个人一旦与网络接触,难免存在信息泄露的风险. 近年来,数据泄露事件频发,造成的直接损失.间接损失以及社会影响都非常严重.2018年初"Facebook数据泄露事件"再次引发全球范围内关注.据悉,此次信息泄露是Facebook自创建以来最大的用户数据泄露事件之一,而Facebook不仅要吞下&q…
随着公司业务发展,对大数据的获取和实时处理的要求就会越来越高,日志处理.用户行为分析.场景业务分析等等,传统的写日志方式根本满足不了业务的实时处理需求,所以本人准备开始着手改造原系统中的数据处理方式,重新搭建一个实时流处理平台,主要是基于hadoop生态,利用Kafka作为中转,SparkStreaming框架实时获取数据并清洗,将结果多维度的存储进HBase数据库. 整个平台大致的框架如下: 操作系统:Centos7 用到的框架: 1. Flume1.8.0 2. Hadoop2.9.0 3.…
第1章 MapReduce概述 1.1 MapReduce定义 1.2 MapReduce优缺点 1.2.1 优点 1.2.2 缺点 1.3 MapReduce核心思想 MapReduce核心编程思想,如图4-1所示. 图4-1 MapReduce核心编程思想 1)分布式的运算程序往往需要分成至少2个阶段. 2)第一个阶段的MapTask并发实例,完全并行运行,互不相干. 3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出. 4…
第1章 HDFS概述 1.1 HDFS产出背景及定义 1.2 HDFS优缺点 1.3 HDFS组成架构 1.4 HDFS文件块大小(面试重点) 第2章 HDFS的Shell操作(开发重点) 1.基本语法 bin/hadoop fs 具体命令 OR bin/hdfs dfs 具体命令 dfs是fs的实现类. 2.命令大全 [atguigu@hadoop102 hadoop-2.7.2]$ bin/hadoop fs   [-appendToFile <localsrc> ... <dst&…
摘要:由于目标和现实的错位,对很多用户来讲,Hadoop成了一个在技术.应用和成本上都很沉重的产品. 本文分享自华为云社区<Hadoop Spark太重,esProc SPL很轻>,作者:石臻臻的杂货铺. 随着大数据时代的来临,数据量不断增长,传统小机上跑数据库的模式扩容困难且成本高昂,难以支撑业务发展.很多用户开始转向分布式计算路线,用多台廉价的PC服务器组成集群来完成大数据计算任务.Hadoop/Spark就是其中重要的软件技术,由于开源免费而广受欢迎.经过多年的应用和发展,Hadoop已…
半个月前看到博客园有人说.NET不行那篇文章,我只想说你们有时间去抱怨不如多写些实在的东西.  1.SQLSERVER优点和缺点? 优点:支持索引.事务.安全性以及容错性高 缺点:数据量达到100万以上就需要开始优化了,一般我们会对 表进行水平拆分,分表.分区和作业同步等,这样做大大提高了逻辑的复杂性,难以维护,只有群集容错,没有多库负载均衡并行计算功能.  2.SQLSERVER真的不能处理大数据? 答案:当然可以的,打个比方:操作单一数据库称为一维操作,如果操作相同结构,分布在多个服务器上的…
hadoop的基本概念: Hadoop是一个由Apache基金会所开发的分布式系统基础架构. 用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储. Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上:而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large dat…
分布式文件系统即是网络中多台计算机组合在一起提供一个统一存储及管理的系统. Hadoop提供了一个文件系统接口和多个分布式文件系统实现,其中比较重要的就是HDFS(Hadoop Distributed Filesystem)了.Hadoop是一个综合性的文件系统抽象,因此它也可以集成其他文件系统的实现,如本地文件系统和Amazon S3系统及淘宝 TFS等. 1.概念模型 HDFS以流式数据访问模式来存储超大文件,运行于商业硬件集群上. HDFS实现下来,分为两类节点,一个是namenode及s…
Spark与Hadoop对比 什么是Spark Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点:但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法.其架构如下图所示: Spark与Hadoop对比 S…
介绍 此Refcard提供了Apache Hadoop,这是最流行的软件框架,可使用简单的高级编程模型实现大型数据集的分布式存储和处理.我们将介绍Hadoop最重要的概念,描述其架构,指导您如何开始使用它以及在Hadoop上编写和执行各种应用程序. 简而言之,Hadoop是Apache Software Foundation的一个开源项目,可以安装在服务器集群上,以便这些服务器可以通信并协同工作来存储和处理大型数据集.Hadoop近年来因其有效处理大数据的能力而变得非常成功.它允许公司将所有数据…
Hadoop是一个开源框架,它允许在整个集群使用简单编程模型计算机的分布式环境存储并处理大数据.它的目的是从单一的服务器到上千台机器的扩展,每一个台机都可以提供本地计算和存储. “90%的世界数据在过去的几年中产生”. 由于新技术,设备和类似的社交网站通信装置的出现,人类产生的数据量每年都在迅速增长.美国从一开始的时候到2003年产生的数据量为5十亿千兆字节.如果以堆放的数据磁盘的形式,它可以填补整个足球场.在2011年创建相同数据量只需要两天,在2013年该速率仍在每十分钟极大地增长.虽然生产…