用 Python 和 OpenCV 检测图片上的的条形码 这篇博文的目的是应用计算机视觉和图像处理技术,展示一个条形码检测的基本实现.我所实现的算法本质上基于StackOverflow 上的这个问题,浏览代码之后,我提供了一些对原始算法的更新和改进. 首先需要留意的是,这个算法并不是对所有条形码有效,但会给你基本的关于应用什么类型的技术的直觉. 假设我们要检测下图中的条形码: 图1:包含条形码的示例图片 现在让我们开始写点代码,新建一个文件,命名为detect_barcode.py,打开并编…
原文地址:http://python.jobbole.com/80448/ 假设我们要检测下图中的条形码: # load the image and convert it to grayscale 12 image = cv2.imread(args["image"]) 13 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 14 15 # compute the Scharr gradient magnitude representatio…
简介 用Typora 写Markdown 1年多了,这个编辑器的确很好用,但就是写完博客复制到博客园时要一个个手动插替换图片非常麻烦.后来发现最新版的Typora 已经支持图片上传功能,在 设置-图像 里,你可以找到上传服务的设定. 其实现原理:Typora 向程序输入图片的本地地址,然后接收程序的输出,再用其替换文档中的图片 以下为废话: 在Typora 推出这个功能前,要实现这个功能实际上可以编写脚本,先把图片上传到网盘,然后通过返回的url替换文件中图片,但总感觉没有博客园官方的上传好.虽…
1.在图片上画图(直线,矩形,圆形,多边形) import numpy as np import cv2 img = cv2.imread('watch.jpg',cv2.IMREAD_COLOR) #给图片加线 #参数分别表示,起始和终止点的坐标,线的颜色,最后一个参数可以不填,代表线的粗细 #线的颜色使用BGR表示,越大代表成分越多,红(0,0,255),白(255,255,255) cv2.line(img,(0,0),(150,150),(0,0,255),10) #矩形,指定左上和右下…
原文链接:https://blog.csdn.net/liqiancao/article/details/55670749 介绍 硕士阶段的毕设是关于昆虫图像分类的,代码写到一半,上周五导师又给我新的昆虫图片数据集了,新图片中很多图片很大,但是图片中的昆虫却很小,所以我就想着先处理一下图片,把图片中的昆虫裁剪下来,这样除去大部分无关背景,应该可以提高识别率. 原图片举例(将红色矩形框部分裁剪出来)):  step1:加载图片,转成灰度图 image = cv2.imread("353.jpg&q…
python 去除水印"人工"智能去除水印 这两天公司来了一个新的需求--去除水印,对于我一个从未接触过的这种事情的人来说,当时我是蒙的.不过首先我就去搜索了一下是否有该种合适的功能模块,经过我的筛选,发现opencv应该是最有满足我这个需求可能的模块了. 我先把我的测试例子放上来. 测试图片(你可能在别处看到过,没错就是你看到过的那个例子图) 第一种方法: 该方法看着是不是很简单?没错就这么几行代码,但是这种方式需要一个美工,让他配合你做一张di.png di.png # 方式一 i…
坑1:上传图片时,py文件中@app.route('/upload/',methods = {'post','get'})中upload后如有斜杠,则postman中发送post时的网址中也要为upload/,如果不带斜杠则都要不带. pycharm小技巧:双击选中短语,三击选中本行: 选中系统自带对象后,右键→go to declaration可以得到关于该对象的详细声明信息 知识点1: 静态文件:就是那些不会改变的文件.在一般的应用程序中,静态文件包括 CSS 文件,JavaScript 文…
OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数很少,也就普通的读取图片,灰度转换,显示图像,简单的编辑图像罢了. 如下: 读取图…
文章目录: OpenCV安装 安装numpy 安装opencv OpenCV使用 OpenCV测试 效果图: 注意: 图片人脸检测 程序要求: 技术实现思路 注意 本文使用的环境是:Windows+Python3.x+Anaconda 安装Python以及Anaconda的步骤本文不予以讲解了,下面主要讲的是OpenCV的安装以及使用. OpenCV安装 安装numpy 如果没有numpy的话要先下载numpy,一般安装完Anaconda后就会自带很多库,这也是我推荐使用Anaconda的原因.…
配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like Haar-like百科释义.通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而…