LSTM入门学习 摘自:http://blog.csdn.net/hjimce/article/details/51234311 下面先给出LSTM的网络结构图: 看到网络结构图好像很复杂的样子,其实不然,LSTM的网络结构图无非是为了显示其高大上而已,这其实也是一个稍微比RNN难那么一丁点的算法.为了简单起见,下面我将直接先采用公式进行讲解LSTM,省得看见LSTM网络结构图就头晕. (1)RNN回顾 先简单回顾一下RNN隐层神经元计算公式为: 其中U.W是网络模型的参数,f(.)表示激活函数…
摘自:https://zybuluo.com/hanbingtao/note/581764 写得非常好 见原文 长短时记忆网络的思路比较简单.原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非常敏感.那么,假如我们再增加一个状态,即c,让它来保存长期的状态,那么问题不就解决了么?如下图所示: 新增加的状态c,称为单元状态(cell state).我们把上图按照时间维度展开: 上图仅仅是一个示意图,我们可以看出,在t时刻,LSTM的输入有三个:当前时刻网络的输入值.上一时刻LSTM的输出值.…
一.为何要学习Hadoop? 这是一个信息爆炸的时代.经过数十年的积累,很多企业都聚集了大量的数据.这些数据也是企业的核心财富之一,怎样从累积的数据里寻找价值,变废为宝炼数成金成为当务之急.但数据增长的速度往往比cpu和内存性能增长的速度还要快得多.要处理海量数据,如果求助于昂贵的专用主机甚至超级计算机,成本无疑很高,有时即使是保存数据,也需要面对高成本的问题,因为具有海量数据容量的存储设备,价格往往也是天文数字.成本和IT能力成为了海量数据分析的主要瓶颈. Hadoop这个开源产品的出现,打破…
from:https://baijiahao.baidu.com/s?id=1584177164196579663&wfr=spider&for=pc seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型是根据输入序列X来生成输出序列Y,在翻译,文本自动摘要和机器人自动问答以及一些回归预测任务上有着广泛的运用.以encode和decode为代表的seq2seq模型,encode意思是将输入序列转化成一个固定长度的向量,decode意思是将输入…
1.1 UML基础知识扫盲 UML这三个字母的全称是Unified Modeling Language,直接翻译就是统一建模语言,简单地说就是一种有特殊用途的语言. 你可能会问:这明明是一种图形,为什么说是语言呢?伟大的汉字还不是从图形(象形文字)开始的吗?语言是包括文字和图形的!其实有很多内容文字是无法表达的,你见过建筑设计图纸吗?里面还不是很多图形,光用文字能表达清楚建筑设计吗?在建筑界,有一套标准来描述设计,同样道理,在软件开发界,我们也需要一套标准来帮助我们做好软件开发的工作.UML就是…
http://blog.csdn.net/scotfield_msn/article/details/60339415 在TensorFlow (RNN)深度学习下 双向LSTM(BiLSTM)+CRF 实现 sequence labeling  双向LSTM+CRF跑序列标注问题 源码下载 去年底样子一直在做NLP相关task,是个关于序列标注问题.这 sequence labeling属于NLP的经典问题了,开始尝试用HMM,哦不,用CRF做baseline,by the way, 用的CR…
深度学习|基于LSTM网络的黄金期货价格预测 前些天看到一位大佬的深度学习的推文,内容很适用于实战,争得原作者转载同意后,转发给大家.之后会介绍LSTM的理论知识. 我把code先放在我github上,大家有需要的自行下载,等原作者上传相关code时,我再告诉大家.欢迎大家关注大佬的公众号. https://github.com/RankXiaoLong/PythonVisualization import pandas as pd import datetime import matplotl…
小白学习VUE第一篇文章---如何看懂网上搜索到的VUE代码或文章---使用VUE的三种模式: 直接引用VUE; 将vue.js下载到本地后本目录下使用; 安装Node环境下使用; ant-design-vue只是Vue实现的一组ant-design UI模板代码,真正使用的还是VUE环境; 直接引用VUE(直接将代码复制保存成一个html文件即可双击在浏览器中运行):<script src="https://unpkg.com/vue"></script> &…
一.关于这个系列 自从2018年底离开工作了3年的M公司加入X公司之后,开始了ASP.NET Core的实践,包括微服务架构与容器化等等.我们的实践是渐进的,当我们的微服务数量到了一定值时,发现运维工作量已将增加了很多,因此容器编排引擎的需求也随之产生(虽然我们一直都知道K8S的必要性).同时,在张队发的<.NET云原生采用情况调查>中已经表明,容器编排和自动化领域Kubernetes已经占据了主体地位,学习Kubernetes刻不容缓! 所以,我将K8S的入门学习放到了2019年的学习列表中…
https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届国际机器学习会议(ICML 2018)在瑞典斯德哥尔摩成功举办.ICML 2018 所接收的论文的研究主题非常多样,涵盖深度学习模型/架构/理论.强化学习.优化方法.在线学习.生成模型.迁移学习与多任务学习.隐私与安全等,在本文中,腾讯 AI Lab 的研究者结合自身的研究重心和研究兴趣对部分 IC…