mahout中KMeans算法】的更多相关文章

本博文主要内容有   1.kmeans算法简介 2.kmeans执行过程  3.关于查看mahout中聚类结果的一些注意事项 4.kmeans算法图解      5.mahout的kmeans算法实现原理      6.kmeans算法运行时参数介绍  7.使用mahout自带的fpg算法来对我们的测数据retail.dat进行kmeans算法(但是0.9及其以后版本照样可以用,但是格式要注意)  8.使用开始使用mahout自带的kmeans算法来对我们的测数据retail.dat进行kmea…
本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了其比较容易实现并行化. 学习mahout就先从简单的kmeans算法开始学起,就当抛砖引玉了. 1. 首先来简单的回顾一下KMeans算法: (1)   根据事先给定的k值建立初始划分,得到k个Cluster,比如,可以随机选择k个点作为k个Cluster的重心,又或者用其他算法得到的Cluster…
       首先简单说明下,mahout下处理的文件必须是SequenceFile格式的,所以需要把txtfile转换成sequenceFile.SequenceFile是hadoop中的一个类,允许我们向文件中写入二进制的键值对,具体介绍请看eyjian写的http://www.hadoopor.com/viewthread.php?tid=144&highlight=sequencefile       mahout中提供了一种将指定文件下的文件转换成sequenceFile的方式.(Yo…
预备工作: 启动hadoop集群 准备数据 Synthetic_control.data数据集下载地址http://archive.ics.uci.edu/ml/databases/synthetic_control/synthetic_control.data 在集群中创建 /user/root/testdata 目录,必须是这个目录,不能改变,若是改变的话,得对应的去改变源码. 将准备好的数据上传到集群的/user/root/testdata下. 预备工作结束. 正式测试: 运行:[hado…
在使用mahout之前要安装并启动hadoop集群 将mahout的包上传至linux中并解压即可 mahout下载地址: 点击打开链接 mahout中的算法大致可以分为三大类: 聚类,协同过滤和分类 其中 常用聚类算法有:canopy聚类,k均值算法(kmeans),模糊k均值,层次聚类,LDA聚类等 常用分类算法有:贝叶斯,逻辑回归,支持向量机,感知器,神经网络等 下面将运行mahout中自带的example例子jar包来查看mahou是否能正确运行 练习数据下载地址: 点击打开链接 上面的…
在使用mahout之前要安装并启动hadoop集群 将mahout的包上传至linux中并解压即可 mahout下载地址: 点击打开链接 mahout中的算法大致可以分为三大类: 聚类,协同过滤和分类 其中 常用聚类算法有:canopy聚类,k均值算法(kmeans),模糊k均值,层次聚类,LDA聚类等 常用分类算法有:贝叶斯,逻辑回归,支持向量机,感知器,神经网络等 下面将运行mahout中自带的example例子jar包来查看mahou是否能正确运行 练习数据下载地址: 点击打开链接 上面的…
利用Mahout实现在Hadoop上运行K-Means算法 一.介绍Mahout Mahout是Apache下的开源机器学习软件包,目前实现的机器学习算法主要包含有协同过滤/推荐引擎,聚类和分类三个部分.Mahout从设计开始就旨在建立可扩展的机器学习软件包,用于处理大数据机器学习的问题,当你正在研究的数据量大到不能在一台机器上运行时,就可以选择使用Mahout,让你的数据在Hadoop集群的进行分析.Mahout某些部分的实现直接创建在Hadoop之上,这就使得其具有进行大数据处理的能力,也是…
<机器学习实战>kMeans算法(K均值聚类算法) 机器学习中有两类的大问题,一个是分类,一个是聚类.分类是根据一些给定的已知类别标号的样本,训练某种学习机器,使它能够对未知类别的样本进行分类.这属于supervised learning(监督学习).而聚类指事先并不知道任何样本的类别标号,希望通过某种算法来把一组未知类别的样本划分成若干类别,这在机器学习中被称作 unsupervised learning (无监督学习).在本文中,我们关注其中一个比较简单的聚类算法:k-means算法. k…
kmeans算法的原理参考:http://www.cnblogs.com/mikewolf2002/p/3368118.html 下面学习一下opencv中kmeans函数的使用.      首先我们通过OpenCV中的随机数产生器RNG,生成一些均匀分布的随机点,这些点的位置对应一副图像中的像素位置,然后使用kmeans算法对这些随机点进行分类,并计算出分类簇的中心点.      随机产生的簇的数量是2到5之间的值,采样点的数量范围是1-1000,一维矩阵centers存放kmeans算法结束…
yolov3 kmeans yolov3在做boundingbox预测的时候,用到了anchor boxes.这个anchors的含义即最有可能的object的width,height.事先通过聚类得到.比如某一个像素单元,我想对这个像素单元预测出一个object,围绕这个像素单元,可以预测出无数种object的形状,并不是随便预测的,要参考anchor box的大小,即从已标注的数据中通过聚类统计到的最有可能的object的形状. .cfg文件内的配置如下: [yolo] mask = 3,4…