有一定Python和TensorFlow基础的人看应该很容易,各领域的应用,但比较广泛,不深刻,讲硬件的部分可以作为入门人的参考. <Keras快速上手基于Python的深度学习实战>系统地讲解了深度学习的基本知识.建模过程和应用,并以深度学习在推荐系统.图像识别.自然语言处理.文字生成和时间序列中的具体应用为案例,详细介绍了从工具准备.数据获取和处理到针对问题进行建模的整个过程和实践经验. <Keras快速上手>PDF,531页,带书签目录,彩色配图,文字可以复制. 配套源代码和…
从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Inceptionism.在这篇文章中,我们将讨论几个不同的深度学习框架,库以及工具. 深度学习是机器学习和人工智能的一种形式,利用堆积在彼此顶部的神经网络的多个隐藏层来尝试形成对数据更深层次的“理解”. 最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的…
入门推荐学习<python编程快速上手>前6章是python的基础知识,通俗易懂地讲解基础,初学者容易犯错的地方,都会指出来.从第三章开始,每章都有一个实践项目,用来巩固前面所学的知识. 从第七章开始就是书名中的后半部:让繁琐工作自动化.每个章节都可独立出来.每看完一个章节,你都能将其中的知识点融会贯通,用到自己的日常工作中,提高效率.第九章 组织文件对系统管理员非常有用,能够指挥程序完成复制 备份文件(夹)操作.第十一章是web抓取信息,介绍了主流的request beautifulSoup…
转自:https://www.zhihu.com/question/50030898/answer/235137938 如何比较Keras, TensorLayer, TFLearn ? 这三个库主要比的是API设计水平,不得不说原始的 Tensorflow API的确反人类,我承认它的完善.表达能力强,性能好,但是接口设计对人类非常不友好. 这就给了做高层抽象API封装的生存空间,Keras Tensorlayer TFLearn 是目前比较成熟的几个库. 做个比喻,Tensorflow就像当…
特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ…
快速上手学python 作者:白宁超 2016年10月4日19:59:39 摘要:python语言俨然不算新技术,七八年前甚至更早已有很多人研习,只是没有现在流行罢了.之所以当下如此盛行,我想肯定是多因素造成了,当然市场需求的重要因素.吴军博士对大数据流行的解释与python流行或许有些默契.数据一直以来都存在,只是在历史条件下,由于计算性能和技术发展的原因,与之匹配的数据处理技术还不是很先进,以至于很多数据被我们舍弃了.同样,python语言简洁流畅等多种优点,也会让第一次接触的编程人员痴迷,…
一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集实战 2.1 数据要求 这次我们需要采集的数据是知名旅游网站马蜂窝下重庆区域内所有景点的用户评论数据,如下图所示: 思路是,先获取所有景点的poi ID,即每一个景点主页url地址中的唯一数字: 这一步和(数据科学学习手札33)基于Python的网络数据采集实战(1)中做法类似,即在下述界面: 翻页…
语义分割:基于openCV和深度学习(二) Semantic segmentation in images with OpenCV 开始吧-打开segment.py归档并插入以下代码: Semantic segmentation with OpenCV and deep learning # import the necessary packages import numpy as np import argparse import imutils import time import cv2…
基于OpenCL的深度学习工具:AMD MLP及其使用详解 http://www.csdn.net/article/2015-08-05/2825390 发表于2015-08-05 16:33| 5921次阅读| 来源CSDN| 2 条评论| 作者AMD中国异构计算部 深度学习异构计算异构编程MLPopencl 摘要:本文介绍AMD深度学习团队开发的MLP学习工具软件的使用,为深度学习研究人员和开发商提供一个高性能.高易用性的深度学习的软硬件平台方案.AMD-MLP基于OpenCL,支持不同类型…
语义分割:基于openCV和深度学习(一) Semantic segmentation with OpenCV and deep learning 介绍如何使用OpenCV.深度学习和ENet架构执行语义分段.阅读完今天的文章后,能够使用OpenCV对图像和视频应用语义分割.深度学习有助于提高计算机视觉的前所未有的准确性,包括图像分类.目标检测,现在甚至分割. 传统的分割方法是将图像分割为若干部分(标准化切割.图形切割.抓取切割.超像素等):然而,算法并没有真正理解这些部分所代表的内容. 另一方…