南京网络赛 E K Sum】的更多相关文章

K Sum 终于过了这玩意啊啊啊==== 莫比乌斯反演,杜教筛,各种分块,积性函数怎么线性递推还很迷==,得继续研究研究 #include<bits/stdc++.h> using namespace std; #define int long long #define maxn 1000000+10 int P[maxn],g[maxn]; bool vis[maxn]; unordered_map<int,int> mp; int T,n,k; ); ; void init()…
Count The Pairs Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 277    Accepted Submission(s): 150 Problem Description   With the 60th anniversary celebration of Nanjing University of Science…
2018ICPC南京网络赛 A. An Olympian Math Problem 题目描述:求\(\sum_{i=1}^{n} i\times i! \%n\) solution \[(n-1) \times (n-1)! \% n= (n-2)!(n^2-2n+1) \%n =(n-2)!\] \[(n-2+1)\times (n-2)! \% n= (n-3)!(n^2-3n+2) \%n =(n-3)! \times 2\] 以此类推,最终只剩下\(n-1\) 时间复杂度:\(O(1)\…
2019ICPC南京网络赛A题 The beautiful values of the palace https://nanti.jisuanke.com/t/41298 Here is a square matrix of n * nn∗n, each lattice has its value (nn must be odd), and the center value is n * nn∗n. Its spiral decline along the center of the squar…
Divide Groups Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 423    Accepted Submission(s): 161 Problem Description   This year is the 60th anniversary of NJUST, and to make the celebration mor…
Walk Through Squares Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 200    Accepted Submission(s): 57 Problem Description   On the beaming day of 60th anniversary of NJUST, as a military colleg…
2019-ACM-ICPC-南京区网络赛-E. K Sum-杜教筛+欧拉定理 [Problem Description] 令\(f_n(k)=\sum_{l_1=1}^n\sum_{l_2=1}^n\dots\sum_{l_k=1}^n gcd(l_1,l_2,\dots,l_k)\).求\(\sum_{i=2}^kf_n(i)\ mod \ (10^9+7)\). [Solution] 对于\(f_n(k)\)有: \[ \sum_{l_1=1}^n\sum_{l_2=1}^n\dots\su…
南京网络赛自闭现场 https://nanti.jisuanke.com/t/41298 二维偏序经典题型 二维前缀和!!! #include<bits/stdc++.h> using namespace std; #define int long long #define sc(x) scanf("%lld",&x); int T; #define P pair<int,int> #define fi first #define se second #…
目录 题目链接 思路 代码 题目链接 传送门 思路 首先我们将原式化简: \[ \begin{aligned} &\sum\limits_{l_1=1}^{n}\sum\limits_{l_2=1}^{n}\dots\sum\limits_{l_k=1}^{n}gcd(l_1,l_2,\dots,l_k)^2&\\ =&\sum\limits_{d=1}^{n}d^2\sum\limits_{l_1=1}^{n}\sum\limits_{l_2=1}^{n}\dots\sum\li…
Description: 定义函数 \[ f _n (k) = \sum _{l _1 = 1} ^n \sum _{l _2 = 1} ^n \cdots \sum _{l _k = 1} ^n \gcd(l _1, l _2, \cdots, l _k) ^2 \] 现给定 \(n, k\),需要求出 \(\sum _{i = 2} ^k f _n (i)\),答案对 \(10 ^9 + 7\) 取模. \(T\) 组数据. \[ 1 \le T \le 10, 1 \le n \le 10…