本次Octave仿真解决的问题是,根据两门入学考试的成绩来决定学生是否被录取,我们学习的训练集是包含100名学生成绩及其录取结果的数据,需要设计算法来学习该数据集,并且对新给出的学生成绩进行录取结果预测. 首先,我们读取并绘制training set数据集: %% Initialization clear ; close all; clc %% Load Data % The first two columns contains the exam scores and the third col…
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数,以用于分类.) 算法原理 首先要提到的概念是回归. 对于回归这个概念,在以后的文章会有系统而深入的学习.简单的说,回归就是用一条线对N多数据点进行一个拟合,这个拟合的过程就叫做回归. Logistic回归分类算法就是对数据集建立回归公式,以此进行分类. 而至于如何寻找最佳回归系数,或者说是分类器的…
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数,以用于分类.) 算法原理 首先要提到的概念是回归. 对于回归这个概念,在以后的文章会有系统而深入的学习.简单的说,回归就是用一条线对N多数据点进行一个拟合,这个拟合的过程就叫做回归. Logistic回归分类算法就是对数据集建立回归公式,以此进行分类. 而至于如何寻找最佳回归系数,或者说是分类器的…
在基于高斯分布的异常检测算法一文中,详细给出了异常检测算法的原理及其公式,本文为该算法的Octave仿真.实例为,根据训练样例(一组网络服务器)的吞吐量(Throughput)和延迟时间(Latency)数据,标记出异常的服务器. 可视化的数据集如下: 我们根据数据集X,计算其二维高斯分布的数学期望mu与方差sigma2: function [mu sigma2] = estimateGaussian(X) %ESTIMATEGAUSSIAN This function estimates th…
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里的循环神经网络,无奈理论太艰深,只能从头开始开始慢慢看,因此产生写一个项目的想法,把机器学习和深度学习里关于分类的算法整理一下,按照原理写一些demo,方便自己也方便其他人.项目地址:https://github.com/LiuRoy/classfication_demo,目前实现了逻辑回归和神经网…
分类算法之逻辑回归(Logistic Regression) 1.二分类问题 现在有一家医院,想要对病人的病情进行分析,其中有一项就是关于良性\恶性肿瘤的判断,现在有一批数据集是关于肿瘤大小的,任务就是根据肿瘤的大小来判定是良性还是恶性.这就是一个很典型的二分类问题,即输出的结果只有两个值----良性和恶性(通常用数字0和1表示).如图1所示,我们可以做一个直观的判定肿瘤大小大于5,即为恶心肿瘤(输出为1):小于等于5,即为良性肿瘤(输出为0). 2.分类问题的本质 分类问题本质上属于有监督学习…
Support vector machines 支持向量机,简称SVM 分类算法的目的是学会一个分类函数或者分类模型(分类器),能够把数据库中的数据项映射给定类别中的某一个,从而可以预测未知类别. SVM是一种监督式学习的方法. 支持向量:支持或支撑平面上把两类类别划分开来的超平面的向量点 机:就是算法,机器学习常把一些算法看作是一个机器 SVM 其实就是一种很有用的二分类方法. 超平面: n维空间中, 满足n元一次方程a1x1+a2x2+...+anxn=b的点(x1,x2,...,xn)的全…
logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻辑回归,无奈啊...虽然这个算法中有回归二字,但它做的事情却并不是回归,而是分类.这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法.因此,logistic回归瞬间也变得高大上起来. 本文用…
Netflix工程总监眼中的分类算法:深度学习优先级最低 摘要:不同分类算法的优势是什么?Netflix公司工程总监Xavier Amatriain根据奥卡姆剃刀原理依次推荐了逻辑回归.SVM.决策树集成和深度学习,并谈了他的不同认识.他并不推荐深度学习为通用的分类技术. [编者按]针对Quora上的一个老问题:不同分类算法的优势是什么?Netflix公司工程总监Xavier Amatriain近日给出新的解答,他根据奥卡姆剃刀原理依次推荐了逻辑回归.SVM.决策树集成和深度学习,并谈了他的不同…
knn算法(k-Nearest Neighbor algorithm).是一种经典的分类算法.注意,不是聚类算法.所以这种分类算法 必然包括了训练过程. 然而和一般性的分类算法不同,knn算法是一种懒惰算法.它并非像其他的分类算法先通过训练建立分类模型.,而 是一种被动的分类过程.它是边测试边训练建立分类模型. 算法的一般描述过程如下: 1.首先计算每个测试样本点到其他每个点的距离.这个距离可以是欧氏距离,余弦距离等. 2.然后取出距离小于设定的距离阈值的点.这些点即为根据阈值环绕在测试样本最邻…