逻辑回归提高阈值对p和r的影响】的更多相关文章

这里我做了一个实验 也就是随着阈值的增大,precision增加或者不变,recall减少或者不变.…
数据说明 本数据是一份汽车贷款违约数据 application_id    申请者ID account_number 账户号 bad_ind            是否违约 vehicle_year      汽车购买时间 vehicle_make     汽车制造商 bankruptcy_ind 曾经破产标识 tot_derog           五年内信用不良事件数量(比如手机欠费消号) tot_tr                  全体账户数量 age_oldest_tr     最久…
Logistic逻辑回归 Logistic逻辑回归模型 线性回归模型简单,对于一些线性可分的场景还是简单易用的.Logistic逻辑回归也可以看成线性回归的变种,虽然名字带回归二字但实际上他主要用来二分类,区别于线性回归直接拟合目标值,Logistic逻辑回归拟合的是正类和负类的对数几率. 假设有一个二分类问题,输出为y∈{0,1} 定义sigmoid函数: 用sigmoid函数的输出是0,1之间,用来拟合y=1的概率,其函数R语言画图如下: x = seq(-5, 5, 0.1) y = 1…
一.简介 逻辑回归(Logistic Regression),与它的名字恰恰相反,它是一个分类器而非回归方法,在一些文献里它也被称为logit回归.最大熵分类器(MaxEnt).对数线性分类器等:我们都知道可以用回归模型来进行回归任务,但如果要利用回归模型来进行分类该怎么办呢?本文介绍的逻辑回归就基于广义线性模型(generalized linear model),下面我们简单介绍一下广义线性模型: 我们都知道普通线性回归模型的形式: 如果等号右边的输出值与左边y经过某个函数变换后得到的值比较贴…
案例1:使用逻辑回归模型,预测客户的信用评级 数据集中采用defect为因变量,其余变量为自变量 1.加载包和数据集 library(pROC) library(DMwR)model.df <- read.csv('E:\\Udacity\\Data Analysis High\\R\\R_Study\\高级课程代码\\数据集\\第一天\\4信用评级\\customer defection data.csv',sep=',',header=T 2.查看数据集, dim(model.df) hea…
文章来源:公众号-智能化IT系统. 回归模型有多种,一般在数据分析中用的比较常用的有线性回归和逻辑回归.其描述的是一组因变量和自变量之间的关系,通过特定的方程来模拟.这么做的目的也是为了预测,但有时也不是全部为了预测,只是为了解释一种现象,因果关系. 还是按照老风格,不说空泛的概念,以实际的案例出发. 还是先前的案例,购房信息,我们这次精简以下,这8位购房者我们只关注薪水和年龄这两个因素,信息如下: 用户ID 年龄 收入 是否买房 1 27 15W 否 2 47 30W 是 3 32 12W 否…
1.lr.predict_proba(under_text_x)  获得的是正负的概率值 在sklearn逻辑回归的计算过程中,使用的是大于0.5的是正值,小于0.5的是负值,我们使用使用不同的概率结果判定来研究概率阈值对结果的影响 从图中我们可以看出,阈值越小,被判为正的越多,即大于阈值的就是为正,但是存在一个很明显的问题就是很多负的也被判为正值. 当阈值很小时,数据的召回率很大,但是整体数据的准确率很小 因此我们需要根据召回率和准确率的综合考虑选择一个合适的阈值 lr = LogisticR…
1. 目的:根据人口普查数据来预测收入(预测每个个体年收入是否超过$50,000) 2. 数据来源:1994年美国人口普查数据,数据中共含31978个观测值,每个观测值代表一个个体 3. 变量介绍: (1)age: 年龄(以年表示) (2)workclass: 工作类别/性质 (e.g., 国家机关工作人员.当地政府工作人员.无收入人员等) (3)education: 受教育水平 (e.g., 小学.初中.高中.本科.硕士.博士等) (4)maritalstatus: 婚姻状态(e.g., 未婚…
前面写过一个多分类的逻辑回归,现在要做一个简单的二分类,用glm函数 导入csv格式如下: mydata<-read.csv("D://li.csv",header=T) colnames(mydata)<-c("x1","x2","x3","y") model<-glm(formula = y ~ x1+x2+x3, family = quasibinomial(link = "…
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 参考资料 https://www.cnblogs.com/webRobot/p/9034079.html 逻辑回归重点: 1.sigmoid函数(…