#莫比乌斯反演#BZOJ 2694 LCM】的更多相关文章

题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2694 题解: 莫比乌斯反演 不难看出,造成贡献的(i,j)满足gcd(i,j)无平方因子. 其实也就是$\mu(gcd(i,j))!=0$ 先列出求ANS的式子 $\begin{align*}ANS&=\sum_{a=1}^{A}\sum_{b=1}^{B} lcm(a,b)\mu(gcd(a,b))^2\;(同样的,先枚举gcd的值g)\\&=\sum_{g=1}^{min(A,B…
莫比乌斯反演真(TMD)难学.我自看了好长时间. BZOJ 2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1384  Solved: 718 Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必然不会了,于是向你来请教……多组输入 Input 第一行一个整数T 表述数据组数接下来T行,…
2694: Lcm Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 422  Solved: 220[Submit][Status][Discuss] Description 对于任意的>1的n gcd(a, b)不是n^2的倍数也就是说gcd(a, b)没有一个因子的次数>=2 Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample Input 4 2…
原题 定义整数a,b,求所有满足条件的lcm(a,b)的和: 1<=a<=A 1<=b<=B ∀n>1,n2†gcd(a,b)(即任意n>1,\(n^2\)不是gcd(a,b)的约数) 输出答案对2^30取模. 要求gcd(a,b)不能含平方因子,所以gcd(a,b)一定是mu不等于0的数. 那么我们设所有满足条件的数为p 其余与bzoj 2693是一样的,推倒见这里! //敲公式累死了-- #include<cstdio> #include<algo…
求 $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\mu(gcd(i,j))^2$   $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{d}[gcd(i,j)==d]$   $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\frac{1}{d}\sum_{i=1}^{n}\sum_{j=1}^{m}ij[gcd(i,j)==d]$   $\Right…
题意:求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m lcm(i,j)\ : gcd(i,j) 是sf 无平方因子数\) 无平方因子数?搞一个\(\mu(gcd(i,j))\)不就行了..不对不对有正负,是\(\mu^2\)才行 套路推♂倒 (ノ*・ω・)ノ \[ \begin{align*} \sum\limits_{i=1}^n \sum\limits_{j=1}^m \frac{ij}{gcd(i,j)} \mu(gcd(i,j))^2 &=\sum_…
Description 给出A,B,考虑所有满足l<=a<=A,l<=b<=B,且不存在n>1使得n^2同时整除a和b的有序数 对(a,b),求其lcm(a,b)之和.答案模2^30. Input 第一行一个整数T表示数据组数.接下来T行每行两个整数A,B表示一组数据. T ≤ 2000,A,B ≤ 4 × 10^6 Output 对每组数据输出一行一个整数表示答案模2^30的值 Sample Input 52 24 63 45 123333 33333 Sample Out…
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] \[=\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{i j}{\mathrm{gcd}(i, j)}\] \[=\sum_{g=1}^{n} \sum_{i=1}^{n/g} \s…
2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][Discuss] Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究…
首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1 5 1 1 5 1 5 2 Sample Output 14 3 HI…