灰色预测GM(1,1)模型的理论原理】的更多相关文章

来源公式推导连接 https://blog.csdn.net/qq_36387683/article/details/88554434 关键词:灰色预测 python 实现 灰色预测 GM(1,1)模型 灰色系统 预测 灰色预测公式推导 一.前言   本文的目的是用Python和类对灰色预测进行封装 二.原理简述 1.灰色预测概述   灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类:     (1) 灰色时间序列预测.用等时距观测到的反映预测对象特征的一系列数量(如产量.销…
灰色预测实现见:https://www.jianshu.com/p/a35ba96d852b from pandas import Series from pandas import DataFrame import pandas as pd import matplotlib.pyplot as plt class Gray_model: def __init__(self): self.a_hat = None self.x0 = None def fit(self, series=pd.S…
1.简介 预测就是借助于对过去的探讨去推测.了解未来.灰色预测通过原始数据的处理和灰色模型的建立,发现.掌握系统发展规律,对系统的未来状态做出科学的定量预测.对于一个具体的问题,究竟选择什么样的预测模型应以充分的定性分析结论为依据.模型的选择不是一成不变的.一个模型要经过多种检验才能判定其是否合适,是否合格.只有通过检验的模型才能用来进行预测.本章将简要介绍灰数.灰色预测的概念,灰色预测模型的构造.检验.应用,最后对灾变预测的原理作了介绍. 灰色系统理论的产生和发展动态 1982邓聚龙发表第一篇…
最近在做项目时,用户不想使用平均值来判断当前数据状态,想用其他的方式来分析数据的变化状态,在查找了一些资料后,想使用灰色预测来进行数据的预测.下面的内容是从网上综合下来的,java代码也做了一点改动,以做记录和学习. 1.什么是灰色预测 灰色预测是一种对含有不确定因素的系统进行预测的方法.灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况. 灰色时间序…
function SGrey X0 = input('请输入原始负荷数据:'); %输入原始数据 n = length(X0); %原始n年数据 %累加生成 X1 = zeros(1,n); for i = 1:n if i == 1 X1(1,i) = X0(1,i); else X1(1,i) = X0(1,i) + X1(1,i-1); end end X1 %计算数据矩阵B和数据向量Y B = zeros(n-1,2); Y = zeros(n-1,1); for i = 1:n-1 B…
没事玩了一下matlab 发现现在网上的代码都是一组数据预测 所以我就写个批量数据的预测 顺便学习下matlab ----------------------------------我是快乐的分割线------------------------------------ 灰色预测的主要思想是: 1.给定一组数据 2.进行累加,即 X(1)1=x(0)1 X(1)2=x(0)1+x(0)2 X(1)3=x(0)1+x(0)2+x(0)3 … 3.最终目的是为了构造预测方程: 其中: 而为了求得上式…
灰色预测的主要特点是只需要4个数据,就能解决历史数据少,序列的完整性以及可靠性低的问题,能将无规律的原始数据进行生成得到规律性较强的生成序列,易于检验 但缺点是只适合中短期的预测,且只适合指数级增长的预测. 在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据预处理后的数据序列称为生成列.对原始数据进行预处理,不是寻找它的统计规律和概率分布,而是将杂乱无章的原始数据列通过一定的方法处理,变成有规律的时间序列数据,即以数找数的规律,再建立动态模型. 灰色预测通过鉴别系统因素之间发展趋势…
本篇介绍时间序列预测常用的ARIMA模型,通过了解本篇内容,将可以使用ARIMA预测一个时间序列. 什么是ARIMA? ARIMA是'Auto Regressive Integrated Moving Average'的简称. ARIMA是一种基于时间序列历史值和历史值上的预测误差来对当前做预测的模型. ARIMA整合了自回归项AR和滑动平均项MA. ARIMA可以建模任何存在一定规律的非季节性时间序列. 如果时间序列具有季节性,则需要使用SARIMA(Seasonal ARIMA)建模,后续会…
GM(1,1).m %建立符号变量a(发展系数)和b(灰作用量) syms a b; c = [a b]'; %原始数列 A A = [174, 179, 183, 189, 207, 234, 220.5, 256, 270, 285];%填入已有的数据列! n = length(A); %对原始数列 A 做累加得到数列 B B = cumsum(A); %对数列 B 做紧邻均值生成 for i = 2:n C(i) = (B(i) + B(i - 1))/2; end C(1) = [];…
学习建立GM(1,1)灰色预测评估模型,解决实际问题: SARS疫情对某些经济指标的影响问题 一.问题的提出 2003 年的 SARS 疫情对中国部分行业的经济发展产生了一定影响,特别是对部分 疫情较严重的省市的相关行业所造成的影响是显著的,经济影响主要分为直接经济影响 和间接影响.直接经济影响涉及商品零售业.旅游业.综合服务等行业.很多方面难以 进行定量的评估,现仅就 SARS 疫情较重的某市商品零售业.旅游业和综合服务业的影 响进行定量的评估分析. 究竟 SARS 疫情对商品零售业.旅游业和…