Transformer的Pytorch实现【1】】的更多相关文章

Google 2017年的论文 Attention is all you need 阐释了什么叫做大道至简!该论文提出了Transformer模型,完全基于Attention mechanism,抛弃了传统的RNN和CNN. 我们根据论文的结构图,一步一步使用 PyTorch 实现这个Transformer模型. Transformer架构首先看一下transformer的结构图: 解释一下这个结构图.首先,Transformer模型也是使用经典的encoer-decoder架构,由encode…
转载自 https://blog.csdn.net/stupid_3/article/details/83184691…
Transformer注解及PyTorch实现 原文:http://nlp.seas.harvard.edu/2018/04/03/attention.html 作者:Alexander Rush 转载自机器之心:https://www.jiqizhixin.com/articles/2018-11-06-10?from=synced&keyword=transformer 在学习的过程中,将代码及排版整理了一下,方便阅读. "Attention is All You Need"…
多头注意力可以用以下一张图描述: 1.使用pytorch自带的库的实现 torch.nn.MultiheadAttention(embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None) 参数说明如下: embed_dim:最终输出的 K.Q.V 矩阵的维度,这个维度需要和词向量的维度一样 num_heads:设置多头注意力的数量.如果设置为…
文章原创自:微信公众号「机器学习炼丹术」 作者:炼丹兄 联系方式:微信cyx645016617 代码来自github [前言]:看代码的时候,也许会不理解VIT中各种组件的含义,但是这个文章的目的是了解其实现.在之后看论文的时候,可以做到心中有数,而不是一片茫然. VIT类 初始化 和之前的学习一样,从大模型类开始看起,然后一点一点看小模型类: class ViT(nn.Module): def __init__(self, *, image_size, patch_size, num_clas…
​ 前言 本文介绍了Transformer的基本流程,分块的两种实现方式,Position Emebdding的几种实现方式,Encoder的实现方式,最后分类的两种方式,以及最重要的数据格式的介绍. 本文来自公众号CV技术指南的技术总结系列 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. 在讲如何搭建之前,先回顾一下Transformer在计算机视觉中的结构是怎样的.这里以最典型的ViT为例. ​ 如图所示,对于一张图像,先将其分割成NxN个…
目录 从宏观上看Transformer 把张量画出来 开始编码! 从宏观上看自注意力 自注意力的细节 自注意力的矩阵计算 "多头"自注意力 用位置编码表示序列的顺序 残差 解码器 最后的线性和Softmax层 损失函数 下一步 本文翻译自Jay Alammar的博文The Illustrated Transformer 注意力是一个有助于提高神经机器翻译模型性能的机制.在这篇文章中,我们将着眼于Transformer--一个利用注意力来提高模型训练速度的模型.Transformer在特…
来源商业新知网,原标题:百闻不如一码!手把手教你用Python搭一个Transformer 与基于RNN的方法相比,Transformer 不需要循环,主要是由Attention 机制组成,因而可以充分利用python的高效线性代数函数库,大量节省训练时间. 可是,文摘菌却经常听到同学抱怨,Transformer学过就忘,总是不得要领. 怎么办?那就自己搭一个Transformer吧! 上图是谷歌提出的transformer 架构,其本质上是一个Encoder-Decoder的结构.把英文句子输…
Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Awesome-pytorch-list Pytorch & related libraries pytorch : Tensors and Dynamic neural networks in Python with strong GPU acceleration. pytorch extras :…
图解Transformer 前言 Attention这种机制最开始应用于机器翻译的任务中,并且取得了巨大的成就,因而在最近的深度学习模型中受到了大量的关注.在在这个基础上,我们提出一种完全基于Attention机制来加速深度学习训练过程的算法模型-Transformer.事实证明Transformer结构在特定任务上已经优于了谷歌的神经网络机器翻译模型.但是,Transformer最大的优势在于其在并行化处理上做出的贡献.谷歌也在利用Transformer的并行化方式来营销自己的云TPU.所以,…