Partition和ReduceTask的关系】的更多相关文章

hdfs中的block是分布式存储的最小单元,类似于盛放文件的盒子,一个文件可能要占多个盒子,但一个盒子里的内容只可能来自同一份文件.假设block设置为128M,你的文件是250M,那么这份文件占3个block(128+128+2).这样的设计虽然会有一部分磁盘空间的浪费,但是整齐的block大小,便于快速找到.读取对应的内容.(p.s. 考虑到hdfs冗余设计,默认三份拷贝,实际上3*3=9个block的物理空间.) spark中的partition 是弹性分布式数据集RDD的最小单元,RD…
1.消费者与Partition 以下来自<kafak权威指南>第4章. 假设主题T1有四个分区. 1.1.一个消费者组 1.1.1.消费者数量小于分区数量 只有一个消费者时,消费者1将收到4个分区的全部消息. 当有两个消费者时,每个消费者将分别从两个分区接受消息. 1.1.2.消费者数量等于分区数量 当有四个消费者时,每个消费者都可以接受一个分区的消息. 1.1.3.消费者数量大于于分区数量 当有五个消费者时,会有闲置的消费者. 1.2.两个消费者组 消费者群组之间是互不影响的,如图: 2.分…
本期内容: 1.RDD依赖关系的本质内幕 2.依赖关系下的数据流视图 3.经典的RDD依赖关系解析 4.RDD依赖关系源码内幕 1.RDD依赖关系的本质内幕 由于RDD是粗粒度的操作数据集,每个Transformation操作都会生成一个新的RDD,所以RDD之间就会形成类似流水线的前后依赖关系:在spark中,RDD之间存在两种类型的依赖关系:窄依赖(Narrow Dependency)和宽依赖(Wide Dependency 或者是 Narrow Dependency):如图1所示显示了RD…
随着对spark的业务更深入,对spark的了解也越多,然而目前还处于知道的越多,不知道的更多阶段,当然这也是成长最快的阶段.这篇文章用作总结最近收集及理解的spark相关概念及其关系. 名词 driver driver物理层面是指输入提交spark命令的启动程序,逻辑层面是负责调度spark运行流程包括向master申请资源,拆解任务,代码层面就是sparkcontext. worker worker指可以运行的物理节点. executor executor指执行spark任务的处理程序,对j…
MapReduce工作流程 1.准备待处理文件 2.job提交前生成一个处理规划 3.将切片信息job.split,配置信息job.xml和我们自己写的jar包交给yarn 4.yarn根据切片规划计算出MapTask的数量 (以一个MapTask为例) 5.Maptask调用inputFormat生成RecordReader,将自己处理的切片文件内容打散成K,V值 6.MapTask将打散好的K,V值交给Mapper,Mapper经过一系列的处理将KV值写出 7.写出的KV值被outputCo…
文章目录 一 MapReduce概念 1.1 为什么要MapReduce 1.2 MapReduce核心思想 1.3 MapReduce进程 1.4 MapReduce编程规范(八股文) 1.5 MapReduce程序运行流程分析 二 MapReduce理论篇 2.1 Writable序列化 2.1.1 常用数据序列化类型 2.1.2 自定义bean对象实现序列化接口 2.2 InputFormat数据切片机制 2.2.1 FileInputFormat切片机制 2.2.2 CombineTex…
第1章 MapReduce概述 1.1 MapReduce定义 1.2 MapReduce优缺点 1.2.1 优点 1.2.2 缺点 1.3 MapReduce核心思想 MapReduce核心编程思想,如图4-1所示. 图4-1 MapReduce核心编程思想 1)分布式的运算程序往往需要分成至少2个阶段. 2)第一个阶段的MapTask并发实例,完全并行运行,互不相干. 3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出. 4…
MapReduce 排序和序列化 简单介绍 ①序列化 (Serialization) 是指把结构化对象转化为字节流②反序列化 (Deserialization) 是序列化的逆过程. 把字节流转为结构化对象. 当要在进程间传递对象或持久化对象的时候, 就需要序列化对象成字节流, 反之当要将接收到或从磁盘读取的字节流转换为对象, 就要进行反序列化③Java 的序列化 (Serializable) 是一个重量级序列化框架, 一个对象被序列化后, 会附带很多额外的信息 (各种校验信息, header,…
Hadoop详解(05) – MapReduce MapReduce概述 定义 MapReduce是一个分布式运算程序的编程框架,是用户 "基于Hadoop的数据分析应用" 开发的核心框架. MapReduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并行运行在一个Hadoop集群上. 优点 1)易于编程 它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的PC机器上运行.也就是说写一个分布式程序,跟写一个简单的串行程…
转自:http://blog.csdn.net/stark_summer/article/details/50203133 上一篇文章介绍了Kafka在设计上是如何来保证高时效.大吞吐量的,主要的内容集中在底层原理和架构上,属于理论知识范畴.这次我们站在应用和运维的角度,聊一聊集群到位后要怎么才能最好的配置参数和进行测试性能.Kafka的配置详尽且复杂,想要进行全面的性能调优需要掌握大量信息,我也只是通过工作中的一些实战经验来筛选出对集群性能影响最大的几个要点,接下来要阐述的观点也仅限于我所描述…