首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Scikit-learn数据变换
】的更多相关文章
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk…
kaggle数据挖掘竞赛初步--Titanic<数据变换>
完整代码: https://github.com/cindycindyhi/kaggle-Titanic 特征工程系列: Titanic系列之原始数据分析和数据处理 Titanic系列之数据变换 Titanic系列之派生属性&维归约 缺失值填充之后,就要对其他格式有问题的属性进行处理了.比如Sex Embarked这些属性的值都是字符串类型的,而scikit learn中的模型都只能处理数值型的数据,需要将这些原始的字符串类型的数据转为数值型数据.所有数据通常可以分成两种类型:定量与定性.定量的…
(原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉验证 交叉验证用于评估模型性能和进行参数调优(模型选择).分类任务中交叉验证缺省是采用StratifiedKFold. sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jo…
Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的句子,我以自己的理解意译. 翻译自:Scikit Learn:Machine Learning in Python 作者: Fabian Pedregosa, Gael Varoquaux 先决条件 Numpy, Scipy IPython matplotlib scikit-learn 目录 载入…
(原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1. 均方误差(mean squared error,MSE): 2. 平均绝对误差(mean absolute error,MAE) 3. R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
R学习笔记 第五篇:数据变换和清理
在使用R的分组操作之前,首先要了解R语言包,包实质上是实现特定功能的,预先写好的代码库(library),R拥有大量的软件包,许多包都是由某一领域的专家编写的,但并不是所有的包都有很高的质量的,在使用包之前,最好导社区中了解其他网友的反馈. 安装包,引用包和卸载包的命令分别是: install.packages("package-name") library(package-name)remove.packages("package-name") 数据分析的工作,8…
R实战 第六篇:数据变换(aggregate+dplyr)
数据分析的工作,80%的时间耗费在处理数据上,而数据处理的主要过程可以分为:分离-操作-结合(Split-Apply-Combine),也就是说,首先,把数据根据特定的字段分组,每个分组都是独立的:然后,对每个分组按照业务需求执行转换:最后,把转换后的结果组合在一起.在数据处理中,经常需要循环访问数据,R语言是矢量化的,天生具有处理循环操作的优势. 使用ggplot2包中的diamonds数据集做为示例数据 > install.packages('ggplot2') > library(ggp…
Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.…
如何使用scikit—learn处理文本数据
答案在这里:http://www.tuicool.com/articles/U3uiiu http://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction…
dplyr-高效的数据变换与整理工具--转载
1.背景简介 在数据分析工作中,经常需要对原始的数据集进行清洗.整理以及变换.常用的数据整理与变换工作主要包括:特定分析变量的选取.满足条件的数据记录的筛选.按某一个或几个变量排序.对原始变量进行加工处理并生成新的变量.对数据进行汇总以及分组汇总,比如计算各组的平均值等. 其实,上述的数据处理与变换工作在任何一种SQL语言(如Oracle,MySQL)中都非常容易处理,但是R语言作为一门编程语言,如何高效地完成上述类似SQL语言的数据处理功能?本文介绍的R语言dplyr包正是这方面工作的有力武器…