MindArmour差分隐私】的更多相关文章

MindArmour差分隐私 总体设计 MindArmour的Differential-Privacy模块,实现了差分隐私训练的能力.模型的训练主要由构建训练数据集.计算损失.计算梯度以及更新模型参数等过程组成,目前MindArmour的差分隐私训练主要着力于计算梯度的过程,通过相应的算法对梯度进行裁剪.加噪等处理,从而保护用户数据隐私. 图1 差分隐私总体设计 图1是差分隐私训练的总体设计,主要由差分隐私噪声机制(DP Mechanisms).差分隐私优化器(DP Optimizer).差分隐…
摘要:本文将先简单介绍Bandit 问题和本地差分隐私的相关背景,然后介绍基于本地差分隐私的 Bandit 算法,最后通过一个简单的电影推荐场景来验证 LDP LinUCB 算法. Bandit问题是强化学习中一类重要的问题,由于它定义简洁且有大量的理论分析,因此被广泛应用于新闻推荐,医学试验等实际场景中.随着人类进入大数据时代,用户对自身数据的隐私性日益重视,这对机器学习算法的设计提出了新的挑战.为了在保护隐私的情况下解决 Bandit 这一经典问题,北京大学和华为诺亚方舟实验室联合提出了基于…
1 前置知识 本部分只对相关概念做服务于差分隐私介绍的简单介绍,并非细致全面的介绍. 1.1 随机化算法 随机化算法指,对于特定输入,该算法的输出不是固定值,而是服从某一分布. 单纯形(simplex):一个\(k\)维单纯形是指包含\(k+1\)个顶点的凸多面体,一维单纯形是一条线段,二维单纯形是一个三角形,三维单纯形是一个四面体,以此类推推广到任意维."单纯"意味着基本,是组成更复杂结构的基本构件. 概率单纯形(probability simplex):是一个数学空间,上面每个点代…
数据孤岛.数据隐私以及数据安全,是目前人工智能和云计算在大规模产业化应用过程中绕不开的“三座大山”. “联邦学习”作为新一代的人工智能算法,能在数据不出本地的情况下,实现共同建模,提升AI模型的效果,从而保证数据隐私安全,突破数据孤岛和小数据的限制,这无疑成为了跨越“三座大山”的途径之一.因此,作为联邦学习全球首个工业级开源项目,FATE也受到了各方关注,开发者们对加入社区建设纷纷表示期待.(FATE开源社区地址:https://github.com/FederatedAI/FATE) 而在贡献…
TVM 高效保护隐私 ML 这篇文章描述了Myelin,一个在值得信赖的硬件飞地中保护隐私的机器学习框架,以及TVM如何使Myelin快速.关键的想法是,TVM,不像其它流行的ML框架,将模型编译成轻量级,优化,免费依赖库,可以适应资源有限利用. 尝试创建保护隐私的ML模型!查看 TVM可用的repo示例代码. 目的:隐私保护ML 机器学习模型受益于庞大而多样化的数据集.遗憾的是,使用此类数据集通常需要信任集中数据聚合器或计算提供商.对于敏感的应用程序,如医疗保健和金融,这是不可取的,因为可能会…
MindSpore技术理解(下) 4 GraphEngine 由于深度学习算法需要进行大量的计算,很多公司都设计了自己的深度学习专用处理器(如谷歌的张量处理器.阿里巴巴的含光等),华为也发布了自主设计的神经网络处理单元(Neural Processing Unit,NPU)--昇腾系列芯片.可以借助 GE 在 GPU.CPU.昇腾系列芯片上操作 MindSpore 定义的模型. 如图 1 所示,GE 位于 ME 和设备之间.GE 将 ME 的输出数据流图作为输入,在 GE 内部执行某些 图处理操…
MindSpore技术理解(上) 引言 深度学习研究和应用在近几十年得到了爆炸式的发展,掀起了人工智能的第三次浪潮,并且在图像识别.语音识别与合成.无人驾驶.机器视觉等方面取得了巨大的成功.这也对算法的应用以及依赖的框架有了更高级的要求.深度学习框架的不断发展使得在大型数据集上训练神经网络模型时,可以方便地使用大量的计算资源. 深度学习是使用多层结构,从原始数据中自动学习并提取高层次特征的一类机器学习算法.通常,从原始数据中提取高层次.抽象的特征是非常困难的.目前有两种主流的深度学习框架:一种是…
本章小结 ●    理解企业级应用的安全顾虑 ●    理解Hadoop尚未为企业级应用提供的安全机制 ●    考察用于构建企业级安全解决方式的方法 第10章讨论了Hadoop安全性以及Hadoop中用于提供安全控制的机制.当构建企业级安全解决方式(它可能会环绕着与Hadoop数据集交互的很多应用程序和企业级服务)时,保证Hadoop自身的安全不过安全解决方式的一个方面.各种组织努力对数据採用一致的安全机制.而数据是从採用了不同安全策略的异构数据源中提取的. 当这些组织从多个源获取数据.接着提…
我是在差分隐私下看到的,新解决方案的可用性肯定小于原有解决方案的可用性,也就是说信息的后续处理只会降低所拥有的信息量. 那么如果这么说的话为什么还要做特征工程呢,这是因为该不等式有一个巨大的前提就是数据处理方法无比的强大,比如很多的样本要分类,我们做特征提取后,SVM效果很好 ,但是如果用DNN之类的CNN.AuToEncoder,那么效果反而不如原来特征.这样就能理解了,DNN提取能力更强,那么原始就要有更多的信息,在新特征下无论怎么提取,信息就那么多. 信息量越多越好么?肯定不是,否则为什么…
一.论文目标:将差分隐私和频繁项集挖掘结合,主要针对大规模数据. 二.论文的整体思路: 1)预处理阶段: 对于大的数据集,进行采样得到采样数据集并计算频繁项集,估计样本数据集最大长度限制,然后再缩小源数据集:(根据最小的support值,频繁项集之外的项集从源数据集移除)     我们利用字符串匹配去剪切数据集的事务: 2)挖掘阶段: 利用压缩数据集,先构造FP-Tree,隐私预算均匀分配,对真实的结果添加噪声: 3)扰动阶段: 对于候选频繁项集添加拉普拉斯噪声并且输出 通过限制每个事务的长度减…