首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
使用深度学习的超分辨率介绍 An Introduction to Super Resolution using Deep Learning
】的更多相关文章
使用深度学习的超分辨率介绍 An Introduction to Super Resolution using Deep Learning
使用深度学习的超分辨率介绍 关于使用深度学习进行超分辨率的各种组件,损失函数和度量的详细讨论. 介绍 超分辨率是从给定的低分辨率(LR)图像恢复高分辨率(HR)图像的过程.由于较小的空间分辨率(即尺寸)或由于退化的结果(例如模糊),图像可能具有"较低分辨率".我们可以通过以下等式将HR和LR图像联系起来:LR = degradation(HR) 显然,在应用降级函数时,我们从HR图像获得LR图像.但是,我们可以反过来吗?在理想的情况下,是的!如果我们知道确切的降级函数,通过将其逆应用于…
卷积神经网络CNN与深度学习常用框架的介绍与使用
一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器就是要找到一条直线把这两类样本点分开. 对于非线性可分的样本,可以加一些kernel核函数或者特征的映射使其成为一个曲线或者一个曲面将样本分开.但为什么效果不好,主要原因是你很难保证样本点的分布会如图所示那么规则,我们无法控制其分布,当绿色的点中混杂几个蓝色的点,就很难分开了,及时用曲线可以分开,这…
深度学习开源工具——caffe介绍
本页是转载caffe的一个介绍,之前的页面图都down了,更新一下. 目录 简介 要点记录 提问 总结 简介 报告时间是北京时间 12月14日 凌晨一点到两点,主讲人是 Caffe 团队的核心之一 Evan Shelhamer.第一次用 GoToMeeting 参加视频会议,效果真是不错. 报告后分享出了 视频 和 展示文件.另一讲座,cuDNN: Accelerating Convolutional Neural Networks using GPUs,视频 和 展示文件 也已放出. Caff…
深度学习在美团点评推荐平台排序中的应用&& wide&&deep推荐系统模型--学习笔记
写在前面:据说下周就要xxxxxxxx, 吓得本宝宝赶紧找些广告的东西看看 gbdt+lr的模型之前是知道怎么搞的,dnn+lr的模型也是知道的,但是都没有试验过 深度学习在美团点评推荐平台排序中的运用 原创 2017-07-28 潘晖 美团点评技术团队 美团点评作为国内最大的生活服务平台,业务种类涉及食.住.行.玩.乐等领域,致力于让大家吃得更好,活得更好,有数亿用户以及丰富的用户行为.随着业务的飞速发展,美团点评的用户和商户数在快速增长.在这样的背景下,通过对推荐算法的优化,可以更好的给用户…
吴恩达《深度学习》-第三门课 结构化机器学习项目(Structuring Machine Learning Projects)-第一周 机器学习(ML)策略(1)(ML strategy(1))-课程笔记
第一周 机器学习(ML)策略(1)(ML strategy(1)) 1.1 为什么是 ML 策略?(Why ML Strategy?) 希望在这门课程中,可以教给一些策略,一些分析机器学习问题的方法,可以指引朝着最有希望的方向前进.这门课中,我会分享我在搭建和部署大量深度学习产品时学到的经验和教训.比如说,很多大学深度学习课程很少提到这些策略.事实上,机器学习策略在深度学习的时代也在变化,因为现在对于深度学习算法来说能够做到的事情,比上一代机器学习算法大不一样. 1.2 正交化(Orthogon…
go微服务框架go-micro深度学习(一) 整体架构介绍
产品嘴里的一个小项目,从立项到开发上线,随着时间和需求的不断激增,会越来越复杂,变成一个大项目,如果前期项目架构没设计的不好,代码会越来越臃肿,难以维护,后期的每次产品迭代上线都会牵一发而动全身.项目微服务化,松耦合模块间的关系,是一个很好的选择,随然增加了维护成本,但是还是很值得的. 微服务化项目除了稳定性我个人还比较关心的几个问题: 一: 服务间数据传输的效率和安全性. 二: 服务的动态扩充,也就是服务的注册和发现,服务集群化. 三: 微服务功能的可订制化,因为并不是所有的功能都…
深度学习之TensorFlow的介绍与安装
TensorFlow是一个采用数据流图(data flow graphs)用于数值计算的开源软件库.它最初是由Google大脑小组的研发人员设计开发的,用于机器学习和神经网络方面的研究.但是这个系统的通用性使其也可以广泛的应用于其他的计算领域. TensorFlow的命名是根据它的原理来的,Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算.TensorFlow运行过程就是张量从图的一端流动到另一端的计算过程.张量从图中流过的直观图像是这个工具取名为“TensorFlow…
【神经网络与深度学习】CIFAR-10数据集介绍
CIFAR-10数据集含有6万个32*32的彩色图像,共分为10种类型,由 Alex Krizhevsky, Vinod Nair和 Geoffrey Hinton收集而来.包含50000张训练图片,10000张测试图片 http://www.cs.toronto.edu/~kriz/cifar.html 数据集的数据存在一个10000*3072 的 numpy数组中,单位是uint8s,3072是存储了一个32*32的彩色图像.(3072=1024*3).前1024位是r值,中间1024是g值…
【神经网络与深度学习】生成式对抗网络GAN研究进展(五)——Deep Convolutional Generative Adversarial Nerworks,DCGAN
[前言] 本文首先介绍生成式模型,然后着重梳理生成式模型(Generative Models)中生成对抗网络(Generative Adversarial Network)的研究与发展.作者按照GAN主干论文.GAN应用性论文.GAN相关论文分类整理了45篇近两年的论文,着重梳理了主干论文之间的联系与区别,揭示生成式对抗网络的研究脉络. 本文涉及的论文有: Goodfellow Ian, Pouget-Abadie J, Mirza M, et al. Generative adver…
【论文学习】A Fuzzy-Rule-Based Approach for Single Frame Super Resolution
加尔各答印度统计研究所,作者: Pulak Purkait (pulak_r@isical.ac.in) 2013 年 代码:CodeForge.cn http://www.codeforge.cn/article/239282/…