第三讲_图像特征与描述Image Feature Descriptor 概要 特征提取方法 直方图 对图片数据/特征分布的一种统计:对不同量进行直方图统计:可以表示灰度,颜色,梯度,边缘,形状,纹理,局部特征等 灰度直方图:对量化的bin需要人工选择:量化过宽过窄都不好 聚类 混合样本集中内在群组关系 常用方法:Kmeans,EM算法,Mean Shift;谱聚类,层次聚类等 贪心算法,经常陷入局部最优解(非全局最优) K值和初始中心点选择 颜色特征 量化颜色直方图:适用于RGB,HSV等均匀空…
1.直方图 用于计算图片特征,表达, 使得数据具有总结性, 颜色直方图对数据空间进行量化,好比10个bin 2. 聚类 类内对象的相关性高 类间对象的相关性差 常用算法:kmeans, EM算法, meanshift, 谱聚类(密度聚类), 层次聚类 kmeans聚类 选取k个类中心,随机选取 计算每个点跟k个类中心的位置 把数据点分配给距离最近的一个类中心 计算新的类中心-对该类中的所有点取均值 类中心数K的选取 K类平均质心的距离加权平均值, 当k=5时的斜率发生变化,我们可以选取5作为分类…
图像特征描述 什么是图像特征 可以表达图像中对象的主要信息.并且以此为依据可以从其它未知图像中检测出相似或者相同对象 常见的图像特征 常见的图像特征  边缘  角点  纹理 图像特征描述  描述子生成 提取方法 特征提取与描述  SIFT  SURF  HOG  Haar  LBP  KAZE  AKAZE  BRISK DDM  Detection  Description  Matching…
[图像算法]图像特征:GLCM SkySeraph Aug 27th 2011  HQU Email:zgzhaobo@gmail.com    QQ:452728574 Latest Modified Date:Aug 27th 2011 HQU -----------------------------------------------------------------------------------------------------------------------------…
第九讲_图像生成 Image Captioning 生成式对抗网络 Generative Adversarial network 学习数据分布:概率密度函数估计+数据样本生成 生成式模型是共生关系,判别式模型是因果关系 GAN在生成模型的位置 GAN特点 GAN 无监督网络框架 生成器generator and 判别器 discriminator 先学习判别器,然后固定判别器,优化生成器 生成器网络 生成样本数据 判别器网络 样本有真实采样数据+生成器生成的样本数据 EM优化是同方向优化,GAN…
前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ORB BRISK KAZE AKAZE MESR GFTT good feature to tack Bob斑点 STAR AGAST 接下来分别讲述这是一种图像特征检测算法,但是首先,需要了解OPENCV的一种数据结构, KeyPoint结构,该结构的头文件定义如下: class KeyPoi…
摘自本人毕业论文<肺结节CT影像特征提取算法研究> 医学图像特征提取可以认为是基于图像内容提取必要特征,医学图像中需要什么特征基于研究需要,提取合适的特征.相对来说,医学图像特征提取要求更加高,因为对医生的辅助诊断起着至关重要的作用,所以需要严谨可靠的特征.肺结节CT影像特征提取也是属于医学图像特征提取领域的一个部分,有着医学图像特征提取的基本要求.既有其他医学图像特征提取的方法,也有针对肺结节的特定特征提取方法.本小节主要对一些常用的肺结节CT影像医学图像特征提取方法进行介绍,主要可以分为灰…
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 29 理解图像特征 目标本节我会试着帮你理解什么是图像特征,为什么图像特征很重要,为什么角点很重要等.29.1 解释 我相信你们大多数人都玩过拼图游戏吧.首先你们拿到一张图片的一堆碎片,要做的就是把这些碎片以正确的方式排列起来从而重建这幅图像.问题是,你怎样做到的呢?如果把你做游戏的原理写成计算机程序,那计算机就也会玩拼图游戏了.如果计算机可以玩拼图,我们就可以给计算机一大堆自然图片,然后就可以让计算机把它拼成一张大图…
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 34 角点检测的 FAST 算法 目标 • 理解 FAST 算法的基础 • 使用 OpenCV 中的 FAST 算法相关函数进行角点检测原理 我们前面学习了几个特征检测器,它们大多数效果都很好.但是从实时处理的角度来看,这些算法都不够快.一个最好例子就是 SLAM(同步定位与地图构建),移动机器人,它们的计算资源非常有限.为了解决这个问题,Edward_Rosten 和 Tom_Drummond 在 2006 年提出里…
简介 BRIEF是2010年的一篇名为<BRIEF:Binary Robust Independent Elementary Features>的文章中提出,BRIEF是对已检测到的特征点进行描述,它是一种二进制编码的描述子,摈弃了利用区域灰度直方图描述特征点的传统方法,大大的加快了特征描述符建立的速度,同时也极大的降低了特征匹配的时间,是一种非常快速,很有潜力的算法. BRIEF具体算法 由于BRIEF仅仅是特征描述子,所以事先要得到特征点的位置,可以利用FAST特征点检测算法或Harris…