hive的调优:第一个调优:fetch抓取,能够避免使用mr的,就尽量不要用mr,因为mr太慢了 set hive.fetch.task.conversion=more 表示我们的全局查找,字段查找,limit查找都不走mr 这个属性配置有三个取值 more minimal none 如果配置成none,所有的都要走mr程序 hive的本地模式: set hive.exec.mode.local.auto=true 开启本地模式,解决多个小文件输入的时候,分配资源时间超过数据的计算时间 set…
数据的倾斜: 主要就是合理的控制我们的map个数以及reduce个数 第一个问题:maptask的个数怎么定的???与我们文件的block块相关,默认一个block块就是对应一个maptask 第二个问题:reduceTask的个数怎么定的???是我们自己手动设置的,爱设几个设几个,没人管你 第三个问题:是不是maptask的个数越多越好:不一定:有时候有些小文件,都要启动一个maptask,分配资源的时间超过了数据处理的时间 减少mapTask的个数:设置map端的小文件合并:使用combin…
执行如下截图中的语句时卡住了: 原因:yarn未启动,hive底层是要提交mapreduce到yarn上才能计算结果的. 之前启动yarn时,未执行jps查看是否已经启动.其实未启动成功: [root@node01 ~]# start-yarn.sh starting yarn daemons resourcemanager running as process 3220. Stop it first. 具体原因未知. 解决方法:重新启动dfs.yarn.jobhistory.  …
Hive存储格式选择 和Hive 相关优化: 压缩参考 Hive支持的存储数的格式主要有:TEXTFILE .SEQUENCEFILE.ORC.PARQUET. 文件存储格式 列式存储和行式存储 行存储的特点:查询满足条件的一整行数据的时候,列存储则需要去每个聚集的字段找到对应的每个列的值,行存储只需要找到其中一个值,其余的值都在相邻地方,所以此时行存储查询的速度更快. 列存储的特点:因为每个字段的数据聚集存储,在查询只需要少数几个字段的时候,能大大减少读取的数据量:每个字段的数据类型一定是相同…
Hive调优 Hive调优 Fetch抓取 本地模式 表的优化 小表.大表Join 大表Join大表 MapJoin Group By Count(Distinct) 去重统计 行列过滤 动态分区调整 案例实操 数据倾斜 Map数 小文件进行合并 复杂文件增加Map数 Reduce数 并行执行 严格模式 JVM重用 推测执行 执行计划(Explain) Fetch抓取 Fetch抓取是指:Hive中对某些情况的查询可以不必使用MapReduce计算 例如:SELECT * FROM employ…
数据倾斜即为数据在节点上分布不均,是常见的优化过程中常见的需要解决的问题.常见的Hive调优的方法:列剪裁.Map Join操作. Group By操作.合并小文件. 一.表现 1.任务进度长度为99%,在任务监控页面中发现只有几个 reduce 子任务未完成: 2.单一 reduce 记录与平均记录数差异过大(大于3倍),最长时长>>平均时长: 3.job数多的,效率低,多次关联后,产生几个jobs,起码半小时以上才跑完: 二.原因 1.key分布不均: 2.业务数据本身问题: 3.建表有问…
Hive调优 先记录了这么多,日后如果有遇到,再补充. fetch模式 <property> <name>hive.fetch.task.conversion</name> <value>more</value> <description> Expects one of [none, minimal, more]. Some select queries can be converted to single FETCH task mi…
hive 调优(二)参数调优汇总 在hive调优(一) 中说了一些常见的调优,但是觉得参数涉及不多,补充如下 1.设置合理solt数 mapred.tasktracker.map.tasks.maximum 每个tasktracker可同时运行的最大map task数,默认值2. mapred.tasktracker.reduce.tasks.maximum 每个tasktracker可同时运行的最大reduce task数,默认值1. 2.配置磁盘块 mapred.local.dir map…
hive 调优(一)coding调优 本人认为hive是很好的工具,目前支持mr,tez,spark执行引擎,有些大公司原来封装的sparksql,开发py脚本,但是目前hive支持spark引擎(不是很稳定,建议Tez先),所以离线还是用hive比较好. 先将工作中总结,以及学习其他人的hive优化总结如下: 一. 表连接优化 这是比较常见的问题 1.  将大表放后头 Hive假定查询中最后的一个表是大表.它会将其它表缓存起来,然后扫描最后那个表. 因此通常需要将小表放前面,或者标记哪张表是大…
在hive调优(一) 中说了一些常见的调优,但是觉得参数涉及不多,补充如下 1.设置合理solt数 mapred.tasktracker.map.tasks.maximum 每个tasktracker可同时运行的最大map task数,默认值2. mapred.tasktracker.reduce.tasks.maximum 每个tasktracker可同时运行的最大reduce task数,默认值1. 2.配置磁盘块 mapred.local.dir map task中间结果写本地磁盘路径,默…