一.numpy库和matplotlib库的学习 (1)numpy库介绍:科学计算包,支持N维数组运算.处理大型矩阵.成熟的广播函数库.矢量运算.线性代数.傅里叶变换.随机数生成,并可与C++/Fortran语言无缝结合 np.array([1,2,3])列表转换为数组:np.array((1,2,3))元组转换为数组; np.array(range(5))把range对象转换为数组:np.arange(8)类似于内置的range()函数 np.linspace(0,10,11,endpoint…
Python是一种强大的编程语言,其提供了很多用于科学计算的模块,常见的包括numpy.scipy.pandas和matplotlib.要利用Python进行科学计算,就需要一一安装所需的模块,而这些模块可能又依赖于其它的软件包或库,因而安装和使用起来相对麻烦.幸好有人专门在做这一类事情,将科学计算所需要的模块都编译好,然后打包以发行版的形式供用户使用,Anaconda就是其中一个常用的科学计算发行版. 我们从网站(链接1)下载的默认的Anaconda版本已经内置了很多库(链接2),包括nump…
GSL(GNU Scientific Library)作为三大科学计算库之一,除了涵盖基本的线性代数,微分方程,积分,随机数,组合数,方程求根,多项式求根,排序等,还有模拟退火,快速傅里叶变换,小波,插值,基本样条,最小二乘拟合,特殊函数等.下面介绍一下GSL的安装和使用. 方法一: 首先从官网下载到源代码(我用的版本是 gsl-1.9)压缩包,解压后进入目录,执行 ./configure make make install 这个过程需要几分钟.这里还有一点需要注意的是,执行 make inst…
#导入科学计算库 #起别名避免重名 import numpy as np #小技巧:从外往内看==从左往右看 从内往外看==从右往左看 #打印版本号 print(np.version.version) #1.16.2 #声明一个numpy数组,一层list nlist = np.array([1,2,3]) print(nlist) #[1 2 3] #ndim方法用来查看数组的属性--维度 print(nlist.ndim) #1 #使用shape属性来打印多维数组的形状,返回一个tuple,…
Python科学计算库 一.numpy库和matplotlib库的学习 (1)numpy库介绍:科学计算包,支持N维数组运算.处理大型矩阵.成熟的广播函数库.矢量运算.线性代数.傅里叶变换.随机数生成,并可与C++/Fortran语言无缝结合 np.array([1,2,3])列表转换为数组:np.array((1,2,3))元组转换为数组; np.array(range(5))把range对象转换为数组:np.arange(8)类似于内置的range()函数 np.linspace(0,10,…
Python科学计算库Numpy NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库. 1.简介 Numpy是常用的科学计算库. NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引. ndarray 对象是用于存放同类型元素的多维数组. 使用array函数可以创建ndarray对象. numpy.array(o…
# 导入绘图库 from PIL import Image #导入科学计算库 import numpy as np #封装一个图像处理工具类 class TestNumpy(object): def photo2paint(self,img_url): #读取图片,asarray()转矩阵 convert('L')转变成像素化 astype()转元素类型 my_photo = np.asarray(Image.open(img_url).convert('L')).astype('float')…
Intro 对于同样的数值计算任务,使用numpy比直接编写python代码实现 优点: 代码更简洁: numpy直接以数组.矩阵为粒度计算并且支持大量的数学函数,而python需要用for循环从底层实现: 性能更高效: numpy的数组存储效率和输入输出计算性能,比python使用list好很多,用numpy进行计算要比原生Python快得多,而且数据量越大,效果越明显:numpy的大部分代码都是c语言实现的,这是numpy比python高效的原因 numpy核心:ndarray对象 ndar…
这里总结一个guide,主要针对刚开始做数据挖掘和数据分析的同学 说道统计分析工具你一定想到像excel,spss,sas,matlab以及R语言.R语言是这里面比较火的,它的强项是强大的绘图功能以及强大丰富的统计包,通过这个平台你可以了解统计前言的一些实现.它的唯一的问题就是性能问题.所以有时候你需要借用python. 使用R语言你可能需要Rstudio这个工具. python在在任何方面都有相当丰富的模块,科学计算领域也不例外,你可以查看python wiki也可以寻找相关的团体. 你可能会…
今天在搞定Django框架的blog搭建后,尝试一下python的科学计算能力. python的科学计算有三剑客:numpy,scipy,matplotlib. numpy负责数值计算,矩阵操作等: scipy负责常见的数学算法,插值.拟合等: matplotlib负责画图. 首先,百度上头三个,依次安装. 可以考虑使用pyhton34/script/easy-install 工具: easy-insatll -m matplotlib; 尝试一下代码,拟合实例:  1 # -*- coding…