mapreduce运行原理及YARN】的更多相关文章

mapreduce1回顾 mapreduce1的不足 yarn的基本架构 yarn工作流程…
MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算.MapReduce采用”分而治之”的思想,把对大规模数据集的操作,分发给一个主节点管理下的各个分节点共同完成,然后通过整合各个节点的中间结果,得到最终结果.简单地说,MapReduce就是”任务的分解与结果的汇总”. MapReduce架构 先来看一下MapReduce1.0的架构图 上图中的TaskTracker对应HDFS中的DataNode, 在MapReduce1.x中,用于执行MapReduce任务的机器角色有…
市面上的hadoop权威指南一类的都是老版本的书籍了,索性学习并翻译了下最新版的Hadoop:The Definitive Guide, 4th Edition与大家共同学习. 我们通过提交jar包,进行MapReduce处理,那么整个运行过程分为五个环节: 1.向client端提交MapReduce job. 2.随后yarn的ResourceManager进行资源的分配. 3.由NodeManager进行加载与监控containers. 4.通过applicationMaster与Resou…
原文 一.Map的原理和运行流程 Map的输入数据源是多种多样的,我们使用hdfs作为数据源.文件在hdfs上是以block(块,Hdfs上的存储单元)为单位进行存储的. 1.分片 我们将这一个个block划分成数据分片,即Split(分片,逻辑划分,不包含具体数据,只包含这些数据的位置信息),那么上图中的第一个Split则对应两个个文件块,第二个Split对应一个块.需要注意的是一个Split只会包含一个File的block,不会跨文件  2. 数据读取和处理 当我们把数据块分好的时候,Map…
一.Map的原理和运行流程 Map的输入数据源是多种多样的,我们使用hdfs作为数据源.文件在hdfs上是以block(块,Hdfs上的存储单元)为单位进行存储的. 1.分片 我们将这一个个block划分成数据分片,即Split(分片,逻辑划分,不包含具体数据,只包含这些数据的位置信息),那么上图中的第一个Split则对应两个个文件块,第二个Split对应一个块.需要注意的是一个Split只会包含一个File的block,不会跨文件.  2. 数据读取和处理 当我们把数据块分好的时候,MapRe…
1. 背景   “应用程序运行于Hadoop Yarn之上”的需求来源于微博运维数据平台中的调度系统,即调度系统中的任务需要运行于Hadoop Yarn之上.这里的应用程序可以简单理解为一个普通的进程(这里特指Java进程),调度系统中的任务执行实际也是一个进程的运行过程,这里我们不讨论为什么调度系统中的任务(进程)需要运行于Hadoop Yarn之上,仅仅讨论如何使得一个应用程序(进程)可以运行于Hadoop Yarn之上.   应用程序(进程)需要运行于Hadoop Yarn之上,有三种可选…
一.概念综述 MapReduce是一种可用于数据处理的编程模型(或计算模型),该模型可以比较简单,但想写出有用的程序却不太容易.MapReduce能将大型数据处理任务分解成很多单个的.可以在服务器集群中并行执行的任务,而这些任务的计算结果可以合并在一起计算最终的结果.最重要的是,MapReduce的优势在于易于编程且能在大型集群(上千节点)并行处理大规模数据集,以可靠,容错的方式部署在商用机器上. 从MapReduce的所有长处来看,它基本上是一个批处理系统,并不适合交互式分析.不可能执行一条查…
本文源码:GitHub·点这里 || GitEE·点这里 一.Yarn基本结构 Hadoop三大核心组件:分布式文件系统HDFS.分布式计算框架MapReduce,分布式集群资源调度框架Yarn.Yarn并不是在Hadoop初期就有的,是在Hadoop升级发展才诞生的,典型的Master-Slave架构. Yarn包括两个主要进程:资源管理器Resource-Manager,节点管理器Node-Manager. 资源管理器 通常部署在独立的服务器,处理客户端请求: 处理集群中的资源分配和调度管理…
1 Flink的前世今生(生态很重要) 原文:https://blog.csdn.net/shenshouniu/article/details/84439459 很多人可能都是在 2015 年才听到 Flink 这个词,其实早在 2008 年,Flink 的前身已经是柏林理工大学一个研究性项目, 在 2014 被 Apache 孵化器所接受,然后迅速地成为了 ASF(Apache Software Foundation)的顶级项目之一. Apache Flink is an open sour…
Hadoop是市面上使用最多的大数据分布式文件存储系统和分布式处理系统, 其中分为两大块分别是hdfs和MapReduce, hdfs是分布式文件存储系统, 借鉴了Google的GFS论文. MapReduce是分布式计算处理系统, 借鉴了Google的MapReduce论文.本文着重来梳理下新版也就是2.3后的Hadoop的MapReduce部分, 也就是Yarn框架, 以及MapReduce的八大步骤的详细工作. 一 新老MapReduce的介绍和对比1.1 老版的MapReduce介绍老版…