在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强化学习就是决策,它通过对周围的环境不断的更新状态,给出奖励或者惩罚的措施,来不断调整并给出新的策略.简单来说,就像小时候你在不该吃零食的时间偷吃了零食,你妈妈知道了会对你做出惩罚,那么下一次就不会犯同样的错误,如果遵守规则,那你妈妈兴许会给你一些奖励,最终的目标都是希望你在该吃饭的时候吃饭,该吃零食…
Sutton 出版论文的主页: http://incompleteideas.net/publications.html Phd  论文:   temporal credit assignment in reinforcement learning http://incompleteideas.net/publications.html#PhDthesis 最近在做强化学习方面的课题, 发现在强化学习方面被称作强化学习之父的  Sutton  确实很厉害, TD算法和策略梯度策略算法都是他所提出…
Reinforcement-Learning-Introduction-Adaptive-Computation http://incompleteideas.net/book/bookdraft2017nov5.pdf http://incompleteideas.net/book/ebook/the-book.html https://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation/dp/0262…
1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman方程 DQN 从入门到放弃4 动态规划与Q-Learning DQN从入门到放弃5 深度解读DQN算法 DQN从入门到放弃6 DQN的各种改进 DQN从入门到放弃7 连续控制DQN算法-NAF 12/29/2016 看完1和2: 1.2 Deep Reinforcement Learning 深度增…
MIT(Deep Learning for Self-Driving Cars) CMU(Deep Reinforcement Learning and Control ) 参考网址: 1 Deep Learning for Self-Driving Cars  --  6.S094 http://selfdrivingcars.mit.edu/ 2 Deep Reinforcement Learning and Control  --  10703 https://katefvision.gi…
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应用DRL前,阶段性的整理下相关知识点.本文集中在DRL的model-free方法的Value-based和Policy-base方法,详细介绍下RL的基本概念和Value-based DQN,Policy-based DDPG两个主要算法,对目前state-of-art的算法(A3C)详细介绍,其他…
RL的方案 两个主要对象:Agent和Environment Agent观察Environment,做出Action,这个Action会对Environment造成一定影响和改变,继而Agent会从新的环境中获得Reward.循环上述步骤. 举例: 机器人把水杯打翻了,人类说“不能这么做”,机器人获得人类的这个负向反馈,然后机器人观察到水杯打翻的状态,采取了拖地的行为,获得了人类的“谢谢”的正向反馈. Agent学习的目标就是使得期望的回报(reward)最大化. 注意:State(observ…
摘要 新闻推荐系统中,新闻具有很强的动态特征(dynamic nature of news features),目前一些模型已经考虑到了动态特征. 一:他们只处理了当前的奖励(ctr);. 二:有一些模型利用了用户的反馈,如用户返回的频率.(user feedback other than click / no click labels (e.g., how frequentuser returns) ); 三:会给用户推送一些内容类似的新闻,用户看多了会无聊. 为了解决上述问题,我们提出了DQ…
深度学习课程笔记(十八)Deep Reinforcement Learning - Part 1 (17/11/27) Lectured by Yun-Nung Chen @ NTU CSIE 2018-08-11 13:42:23 This video can be found from: https://www.youtube.com/watch?v=yQdD_R_I6vc  Slides: https://www.csie.ntu.edu.tw/~yvchen/f106-adl/doc/1…
https://blog.csdn.net/Mbx8X9u/article/details/80780459 课程主页:http://rll.berkeley.edu/deeprlcourse/ 所有视频的链接:https://www.youtube.com/playlist?list=PLkFD6_40KJIznC9CDbVTjAF2oyt8_VAe3 由于文章较长,且有较多外链接,建议下载PDF版进行阅读 方式一 点击阅读原文即可下载 方式二 返回菜单栏,回复“20180622” 知识背景…