Spark的数据存储】的更多相关文章

Spark本身是基于内存计算的架构,数据的存储也主要分为内存和磁盘两个路径.Spark本身则根据存储位置.是否可序列化和副本数目这几个要素将数据存储分为多种存储级别.此外还可选择使用Tachyon来管理内存数据. 为了适应迭代计算,Spark将经常被重要的数据缓存到内存中以提升数据读取速度,当内存容量有限时,则将数据存入磁盘中或根据最近最少使用页面置换算法将内存中使用频率较低的文件空间收回,从而让新的数据进来. Tachyon的出现主要是为了解决3个问题而设计.一是多应用数据共享问题,二是JVM…
Spark数据存储的核心是弹性分布式数据集(RDD). RDD可以被抽象地理解为一个大的数组(Array),但是这个数组是分布在集群上的. 逻辑上RDD的每个分区叫一个Partition. 在Spark的执行过程中,RDD经历一个个的Transfomation算子之后,最后通过Action算子进行触发操作. 逻辑上每经历一次变换,就会将RDD转换为一个新的RDD,RDD之间通过Lineage产生依赖关系,这个关系在容错中有很重要的作用. 变换的输入和输出都是RDD.RDD会被划分成很多的分区分布…
Spark本身是基于内存计算的架构,数据的存储也主要分为内存和磁盘两个路径.Spark本身则根据存储位置.是否可序列化和副本数目这几个要素将数据存储分为多种存储级别.此外还可选择使用Tachyon来管理内存数据. 为了适应迭代计算,Spark将经常被重要的数据缓存到内存中以提升数据读取速度,当内存容量有限时,则将数据存入磁盘中或根据最近最少使用页面置换算法将内存中使用频率较低的文件空间收回,从而让新的数据进来. Tachyon的出现主要是为了解决3个问题而设计.一是多应用数据共享问题,二是JVM…
Spark Streaming接收Kafka数据存储到Hbase fly spark hbase kafka 主要参考了这篇文章https://yq.aliyun.com/articles/60712([点我])(https://yq.aliyun.com/articles/60712), 不过这篇文章使用的spark貌似是spark1.x的.我这里主要是改为了spark2.x的方式 kafka生产数据 闲话少叙,直接上代码: import java.util.{Properties, UUID…
HDInsight cluster on Linux 登录 Azure portal (https://manage.windowsazure.com ) 点击左下角的 NEW 按钮,然后点击 DATA SERVICES 按钮,点击 HDINSIGHT,选择 HADOOP ON LINUX,如下图所示. 输入集群名称,选择集群大小和账号,设定集群的密码和存储账号,下表是各个参数的含义和配置说明. Name Value Cluster Name Name of the cluster. Clust…
我们都知道现在大数据存储用的基本都是 Hadoop Hdfs ,但在 Hadoop 诞生之前,我们都是如何存储大量数据的呢?这次我们不聊技术架构什么的,而是从技术演化的角度来看看 Hadoop Hdfs. 我们先来思考两个问题. 在 Hdfs 出现以前,计算机是通过什么手段来存储"大数据" 的呢? 为什么会有 Hadoop Hdfs 出现呢? 在 Hadoop Hdfs 出现以前,计算机是通过什么手段来存储"大数据" 要知道,存储大量数据有三个最重要的指标,那就是速…
1.海量日志数据,提取出某日访问百度次数最多的那个IP. 解决方案:首先是将这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中.注意到IP是32位的,最多有个2^32个IP.同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率.然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求. 2.搜索引擎会通过日志文件把用户每次检索使用的所有…
一.HDFS基础架构 1.HDFS特点:水平扩展.高容错性.廉价硬件.开源生态系统 2.Hadoop生态圈 1).分布式存储系统(HDFS),2).资源管理框架(YARN),3).批处理框架(MapReduce.Pig),4).数据仓库(Hive),5).NoSQL系统(HBase.Drill),6).OLAP系统(Impala.Presto.Spark(SQL)),7).实时流计算框架(Storm.Spark(Streaming).Flink),8).机器学习框架(Mahout.Spark(M…
我们都知道现在大数据存储用的基本都是 Hdfs ,但在 Hadoop 诞生之前,我们都是如何存储大量数据的呢?这次我们不聊技术架构什么的,而是从技术演化的角度来看看 Hadoop Hdfs. 我们先来思考两个问题. 在 Hdfs 出现以前,计算机是通过什么手段来存储“大数据” 的呢? 为什么会有 Hadoop Hdfs 出现呢?在 Hdfs 出现以前,计算机是通过什么手段来存储“大数据” 要知道,存储大量数据有三个最重要的指标,那就是速度,容量,容错性.速度和容量的重要性毋庸置疑,如果容量不够大…
转自:http://www.infoq.com/cn/articles/trillion-log-and-data-storage-query-techniques?utm_source=infoq&utm_medium=popular_widget&utm_campaign=popular_content_list&utm_content=homepage 目前大数据存储查询方案大概可以分为:Hbase系.Dremel系.预聚合系.Lucene系,笔者就自身的使用经验说说这几个系…