使用VGG16完成猫狗分类】的更多相关文章

from keras.applications.vgg16 import VGG16 from keras.models import Sequential from keras.layers import Conv2D,MaxPool2D,Activation,Dropout,Flatten,Dense from keras.optimizers import SGD from keras.preprocessing.image import ImageDataGenerator,img_to…
准备数据 点击下载猫狗声音数据集至本地: 解压,文件包结构大概如下图所示 data ├── test │ ├── cats │ │ ├── cat_20.wav │ │ ├── ...... │ │ └── cat_29.wav │ └── dogs │ ├── dog_20.wav │ ├── ...... │ └── dog_29.wav └── train ├── cats │ ├── cat_0.wav │ ├── ...... │ └── cat_19.wav └── dogs ├──…
目录 1.预备工作 1.1 数据集准备 1.2 数据预处理 2.训练 2.1 模型 2.2 定义训练 2.3 训练 3.预测 4.参考文献 声明:这是我的个人学习笔记,大佬可以点评,指导,不喜勿喷.实现过程参考自夜雨飘零的博客以及实现代码.框架是百度开源的框架paddlepaddle. 1.预备工作 ​ 这是我上学期一直没有去填补的坑,之前想通过传统机器学习方法来实现,不过没做完.暑假难得回一次家,所以我想该把我没做完的坑填完吧. ​ 代码到现在为止已经写完了,不过还是存在坑的,比如哈士奇它会识…
首先先导入所需要的库 import sys from matplotlib import pyplot from tensorflow.keras.utils import to_categorical from keras.models import Sequential from keras.layers import Conv2D from keras.layers import MaxPooling2D from keras.layers import Dense from keras.…
笔者这几天在跟着莫烦学习TensorFlow,正好到迁移学习(至于什么是迁移学习,看这篇),莫烦老师做的是预测猫和老虎尺寸大小的学习.作为一个有为的学生,笔者当然不能再预测猫啊狗啊的大小啦,正好之前正好有做过猫狗大战数据集的图像分类,做好的数据都还在,二话不说,开撸. 既然是VGG16模型,当然首先上模型代码了: def conv_layers_simple_api(net_in): with tf.name_scope('preprocess'): # Notice that we inclu…
这是在kaggle上的一个练习比赛,使用的是ImageNet数据集的子集. 注意,mxnet版本要高于0.12.1b2017112. 下载数据集. train.zip test.zip labels 然后解压在data文件夹下 1. 数据 1.1 整理数据 将解压后的数据整理成Gluon能够读取的形式,这里我直接使用了zh.gluon.ai教程上的代码 导入各种库 import math import os import shutil from collections import Counte…
贴一张自己画的思维导图  数据集准备 kaggle猫狗大战数据集(训练),微软的不需要FQ 12500张cat 12500张dog 生成图片路径和标签的List step1:获取D:/Study/Python/Projects/Cats_vs_Dogs/data/Cat下所有的猫图路径名,存放到cats中,同时贴上标签0,存放到label_cats中.狗图同理. train_dir = 'D:/Study/Python/Projects/Cats_vs_Dogs/data' def get_fi…
原数据集:包含 25000张猫狗图像,两个类别各有12500 新数据集:猫.狗 (照片大小不一样) 训练集:各1000个样本 验证集:各500个样本 测试集:各500个样本 1= 狗,0= 猫 # 将图像复制到训练.验证和测试的目录 import os,shutil orginal_dataset_dir = 'kaggle_original_data/train' base_dir = 'cats_and_dogs_small' os.mkdir(base_dir)#保存新数据集的目录 tra…
先说一下WDCP,其实就是一个集成环境,优点是有后台可视化面板操作,不像一般的linux似的 都要用代码命令! Linux 的PHP 环境一般就是两个搭配 [mysql+Apache+PHP]和[Mysql+Nignx+PHP],区别在于Apache 和NGinx,具体区别不多说了,百度即可!现在貌似用Nginx的多一下吧,个人爱好! 这两个搭配,代表的环境包就是Lnmp 和 lamp,大同小异,今天介绍的WDCP集成了Apache和Nginx,后台可以可视化界面操作 一步步慢慢来,开始....…
kaggle是一个为开发商和数据科学家提供举办机器学习竞赛.托管数据库.编写和分享代码的平台,在这上面有非常多的好项目.好资源可供机器学习.深度学习爱好者学习之用.碰巧最近入门了一门非常的深度学习框架:pytorch(如果你对pytorch不甚了解,请点击这里),所以今天我和大家一起用pytorch实现一个图像识别领域的入门项目:猫狗图像识别. 深度学习的基础就是数据,咱们先从数据谈起.此次使用的猫狗分类图像一共25000张,猫狗分别有12500张,我们先来简单的瞅瞅都是一些什么图片. 我们从下…
去年研一的时候想做kaggle上的一道题目:猫狗分类,但是苦于对卷积神经网络一直没有很好的认识,现在把这篇文章的内容补上去.(部分代码参考网上的,我改变了卷积神经网络的网络结构,其实主要部分我加了一层1X1的卷积层,至于作用,我会在后文详细介绍) 题目地址:猫狗大战 同时数据集也可以在上面下载到. 既然是手把手,那么就要从前期的导入数据开始: 导入数据 #import sys, io #sys.stdout = io.TextIOWrapper(sys.stdout.buffer,encodin…
转载自:http://deanhan.com/2018/07/26/vgg16/ 摘要 本文对图片分类任务中经典的深度学习模型VGG16进行了简要介绍,分析了其结构,并讨论了其优缺点.调用Keras中已有的VGG16模型测试其分类性能,结果表明VGG16对三幅测试图片均能正确分类. 前言 VGG是由Simonyan 和Zisserman在文献<Very Deep Convolutional Networks for Large Scale Image Recognition>中提出卷积神经网络…
前言 在上一次的测试中,我们按照官方给的流程,使用EasyDL快速实现了一个具有性别检测功能的人脸识别系统,那么今天,我们将要试一下通过Paddlepaddle从零开始,训练一个自己的多分类模型,并进行嵌入式部署. 整个训练过程和模型在:https://aistudio.baidu.com/aistudio/projectDetail/61103 下面详细介绍模型训练的过程. 数据集准备 我们使用CIFAR10数据集.CIFAR10数据集包含60,000张32x32的彩色图片,10个类别,每个类…
主要参考博客: https://blog.csdn.net/u011046017/article/details/80672597#%E8%AE%AD%E7%BB%83%E4%BB%A3%E7%A0%81http://www.cs.toronto.edu/~frossard/post/vgg16/ 1.物体分类 imagenet_classes.py class_names = '''tench, Tinca tinca goldfish, Carassius auratus great whi…
参考:https://blog.csdn.net/weixin_37813036/article/details/90718310 kaggle是一个为开发商和数据科学家提供举办机器学习竞赛.托管数据库.编写和分享代码的平台,在这上面有非常多的好项目.好资源可供机器学习.深度学习爱好者学习之用.碰巧最近入门了一门非常的深度学习框架:pytorch(如果你对pytorch不甚了解,请点击这里),所以今天我和大家一起用pytorch实现一个图像识别领域的入门项目:猫狗图像识别.深度学习的基础就是数据…
概述 MobileNetsV2是基于一个流线型的架构,它使用深度可分离的卷积来构建轻量级的深层神经网,此模型基于 MobileNetV2: Inverted Residuals and Linear Bottlenecks 中提出的模型结构实现.可以用图像分类任务,比如猫狗分类.花卉分类等等.用户提供一系列带有标注的数据集,该算法会载入在ImageNet-1000上的预训练模型,在用户数据集上做迁移学习.训练后生成的模型可直接在ModelArts平台部署为在线服务或批量服务,同时支持使用CPU.…
Eplan安装完加密狗后一直感叹号异常,最近也是查了很多办法,最后发现是少了个驱动的原因. 就是上面这个驱动,这里放上驱动链接:https://lanzous.com/id5gi8f ,或者随便找一个驱动大师的软件也能自动装上. 安装完后无需重启直接就能打开Eplan,刚才异常的驱动也恢复成了这个…
机器学习策略-误差分析 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1 误差分析 训练出来的模型往往没有达到人类水平的效果,为了得到人类水平的结果,我们对原因进行分析,这个过程称为误差分析. 实例剖析 例如此时你正在训练一个猫分类器,其中正确率为90%,这离目标有一定的距离. 结果发现在错误图片中发现了狗的图片. 我们思考现在是否为了避免在猫图中混入狗而开始做一个项目专门处理狗.而做一个这样的项目会花费宝贵的时间并且不知道是否会取得很好的效果,此时我们利用误差分析流程权衡利弊,是…
上一篇博客[用tensorflow迁移学习猫狗分类]笔者讲到用tensorlayer的[VGG16模型]迁移学习图像分类,那麽问题来了,tensorlayer没提供的模型怎么办呢?别担心,tensorlayer提供了tensorflow中的[slim模型]导入功能,代码例子在tutorial_inceptionV3_tfslim. 那么什么是slim?slim到底有什么用?slim是一个使构建,训练,评估神经网络变得简单的库.它可以消除原生tensorflow里面很多重复的模板性的代码,让代码更…
包括: 理解卷积神经网络 使用数据增强缓解过拟合 使用预训练卷积网络做特征提取 微调预训练网络模型 可视化卷积网络学习结果以及分类决策过程 介绍卷积神经网络,convnets,深度学习在计算机视觉方面广泛应用的一个网络模型. 卷积网络介绍 在介绍卷积神经网络理论以及神经网络在计算机视觉方面应用广泛的原因之前,先介绍一个卷积网络的实例,整体了解卷积网络模型.用卷积网络识别MNIST数据集. from keras import layers from keras import models mode…
前言:本文同步发布于公众号:Charlotte数据挖掘,欢迎关注,获得最新干货- 昨天看到几篇不同的文章写关于机器学习的to do & not to do,有些观点赞同,有些不赞同,是现在算法岗位这么热门,已经不像几年前一样,可能跑过一些项目.懂点原理就可以了,现在对大家的要求更高,尤其工程能力更不可缺少,只跑过一些iris鸢尾花分类.啤酒与尿布.猫狗分类等的同学需要再提高提高,因为竞争太激烈了,我在这里结合我自己的经验总结一下吧- To Do 做项目时,边搜集数据可以边用已经搜集好的少部分数据…
ResNet模型 前言在上一次的测试中,我们从头开始训练了一个三个卷积层串联一个全连接层的输出,作为猫狗分类的预测的模型,这次我们自己训练一个ResNet模型,并在以下三个环境中进行性能的对比 AIStudio CPU: 2 Cores 8GB Memory AIStudio GPU: V100 16GB VMem Edgeboard 训练模型 模型使用AIStudio 进行训练,训练和预测代码如下 RESNET:https://aistudio.baidu.com/aistudio/proje…
度量两个分布之间的差异 (一)K-L 散度 K-L 散度在信息系统中称为相对熵,可以用来量化两种概率分布 P 和 Q 之间的差异,它是非对称性的度量.在概率学和统计学上,我们经常会使用一种更简单的.近似的分布来替代观察数据或太复杂的分布.K-L散度能帮助我们度量使用一个分布来近似另一个分布时所损失的信息量.一般情况下,P 表示数据的真实分布,Q 表示数据的理论分布,估计的模型分布或者 P 的近似分布. (二)K-L 散度公式 ​ Note:KL 散度仅当概率 \(P\) 和 \(Q\) 各自总和…
第二周:机器学习策略(2)(ML Strategy(2)) 误差分析(Carrying out error analysis) 你好,欢迎回来,如果你希望让学习算法能够胜任人类能做的任务,但你的学习算法还没有达到人类的表现,那么人工检查一下你的算法犯的错误也许可以让你了解接下来应该做什么.这个过程称为错误分析,我们从一个例子开始讲吧. 假设你正在调试猫分类器,然后你取得了 90% 准确率,相当于 10% 错误,,在你的开发集上做到这样,这离你希望的目标还有很远.也许你的队员看了一下算法分类出错的…
上一节中,我们采用了一个自定义的网络结构,从头开始训练猫狗大战分类器,最终在使用图像增强的方式下得到了82%的验证准确率.但是,想要将深度学习应用于小型图像数据集,通常不会贸然采用复杂网络并且从头开始训练(training from scratch),因为训练代价高,且很难避免过拟合问题.相对的,通常会采用一种更高效的方法--使用预训练网络. 预训练网络的使用通常有两种方式,一种是利用预训练网络简单提取图像的特征,之后可能会利用这些特征进行其他操作(比如和文本信息结合以用于image capti…
Loss Functions 总结 损失函数分类: 回归损失函数(Regression loss), 分类损失函数(Classification loss) Regression loss functions 通常用于模型预测一个连续的值,例如一个人的年龄 Classification loss functions 通常用于模型预测一个离散的值,例如猫狗分类问题 1. L1 loss Mean Absolute Error(MAE), 也称作L1 loss computes the averag…
题意  两条狗啊,同时跑,,同时结束,各自跑各自的道路,问跑的过程中,他们最大距离和最小距离的差: 方法  恶心一点就是,最大最小距离的求解方法,假设两只狗都只有一条线段要跑,则可以判定在端点处有最大值,最小值的求解方法就是,把一条狗的奔跑方向分解成另一个狗的奔跑方向 + 另外一个向量,这样这条狗相对于另外一条狗处于相对静止:只要求点到线段的最小距离便是: 如果有两段以上的线段:考虑第一条线段:肯定会有一条狗先跑完第一段,另外一条狗没有跑完第一段,根据比例关系我们可以知道那条没有跑完的狗跑到那里…
在使用Entity Framework加载关联实体时,可以有三种方式: 1.懒加载(lazy Loading); 2.贪婪加载(eager loading); 3.显示加载(explicit loading). EF默认使用的是懒加载(lazy Loading).一切由EF自动处理. 这种方式会导致应用程序多次连接数据库,这种情况推荐在数据量较大的情况下使用.当我们需要加载数据较少时,一次性全部加载数据会相对更高效. 我们来看看EF的显示加载(explicit loading)如何让我们完全掌控…
ORM查询语言(OQL)简介--高级篇:脱胎换骨 在写本文之前,一直在想文章的标题应怎么取.在写了<ORM查询语言(OQL)简介--概念篇>.<ORM查询语言(OQL)简介--实例篇>之后,觉得本篇文章应该是前2篇的延续,但又不是一般的延续,因为今天要写的这篇内容,是基于对框架OQL完全重构之后来写的,所以加上一个副标题:脱胎换骨! 一.OQL之前生 1.1,内容回顾: OQL是我设计用来处理PDF.NET开发框架的ORM查询的,因此叫做ORM查询语言.自2006年第一版以来,经历…
asp.net通用查询模块设计 前言 自从上次狂喷了devexpress for asp.net面向互联网的app的各种不合理,好像骂的dev无处容身了,不过说实话,dev在做互联网的app时,生成的代码确实很多,在服务器解析方面,效率肯定不是很高的,这是使用过dev控件的伙计们都有目共睹之处.难道一款被微软官方推荐的dev真他妈的就这么烂吗?我看未必,好钢你得用到刀刃上,你想杀只老母鸡吃,但是你要用棒槌把鸡打死了再煮,估计鸡死了也就成了肉酱了,那这只鸡杀的就太没水准了,你得用锋利的小刀割了老母…